Resource modeling plays a crucial role in raw material quality management for cement manufacturing.Research has shown that geological uncertainty in resource modeling is inevitable and results in risk to future extrac...Resource modeling plays a crucial role in raw material quality management for cement manufacturing.Research has shown that geological uncertainty in resource modeling is inevitable and results in risk to future extraction planning and operations of the cement plant.This study aims to assess the geological uncertainty and associated risk in modeling a cement raw material deposit in southern Vietnam.For this deposit,soil,clay,laterite,and limestone are the four primary rock types,controlling the occurrence and spatial distribution of chemical grades.In this study,hierarchical simulation method was used to evaluate the uncertainty.Rock types were first simulated,and the chemical grades conditioning to the rock types were then generated.The results demonstrated the capability of the hierarchical simulation approach to incorporate the uncertainty of rock types in resource modeling and to allow evaluating the risks in providing the desired raw material for the cement plant in the form of grade-tonnage curves.展开更多
A framework for accelerating modern long-running astrophysical simulations is presented, which is based on a hierarchical architecture where computational steering in the high-resolution run is performed under the gui...A framework for accelerating modern long-running astrophysical simulations is presented, which is based on a hierarchical architecture where computational steering in the high-resolution run is performed under the guide of knowledge obtained in the gradually refined ensemble analyses. Several visualization schemes for facilitating ensemble management, error analysis, parameter grouping and tuning are also integrated owing to the pluggable modular design. The proposed approach is prototyped based on the Flash code, and it can be extended by introducing userdefined visualization for specific requirements. Two real-world simulations, i.e., stellar wind and supernova remnant, are carried out to verify the proposed approach.展开更多
文摘Resource modeling plays a crucial role in raw material quality management for cement manufacturing.Research has shown that geological uncertainty in resource modeling is inevitable and results in risk to future extraction planning and operations of the cement plant.This study aims to assess the geological uncertainty and associated risk in modeling a cement raw material deposit in southern Vietnam.For this deposit,soil,clay,laterite,and limestone are the four primary rock types,controlling the occurrence and spatial distribution of chemical grades.In this study,hierarchical simulation method was used to evaluate the uncertainty.Rock types were first simulated,and the chemical grades conditioning to the rock types were then generated.The results demonstrated the capability of the hierarchical simulation approach to incorporate the uncertainty of rock types in resource modeling and to allow evaluating the risks in providing the desired raw material for the cement plant in the form of grade-tonnage curves.
基金Supported by the National Natural Science Foundation of China(No.U1231108)
文摘A framework for accelerating modern long-running astrophysical simulations is presented, which is based on a hierarchical architecture where computational steering in the high-resolution run is performed under the guide of knowledge obtained in the gradually refined ensemble analyses. Several visualization schemes for facilitating ensemble management, error analysis, parameter grouping and tuning are also integrated owing to the pluggable modular design. The proposed approach is prototyped based on the Flash code, and it can be extended by introducing userdefined visualization for specific requirements. Two real-world simulations, i.e., stellar wind and supernova remnant, are carried out to verify the proposed approach.