Although quantum Bayesian networks provide a promising paradigm for multi-agent decision-making,their practical application faces two challenges in the noisy intermediate-scale quantum(NISQ)era.Limited qubit resources...Although quantum Bayesian networks provide a promising paradigm for multi-agent decision-making,their practical application faces two challenges in the noisy intermediate-scale quantum(NISQ)era.Limited qubit resources restrict direct application to large-scale inference tasks.Additionally,no quantum methods are currently available for multi-agent collaborative decision-making.To address these,we propose a hybrid quantum–classical multi-agent decision-making framework based on hierarchical Bayesian networks,comprising two novel methods.The first one is a hybrid quantum–classical inference method based on hierarchical Bayesian networks.It decomposes large-scale hierarchical Bayesian networks into modular subnetworks.The inference for each subnetwork can be performed on NISQ devices,and the intermediate results are converted into classical messages for cross-layer transmission.The second one is a multi-agent decision-making method using the variational quantum eigensolver(VQE)in the influence diagram.This method models the collaborative decision-making with the influence diagram and encodes the expected utility of diverse actions into a Hamiltonian and subsequently determines the intra-group optimal action efficiently.Experimental validation on the IonQ quantum simulator demonstrates that the hierarchical method outperforms the non-hierarchical method at the functional inference level,and the VQE method can obtain the optimal strategy exactly at the collaborative decision-making level.Our research not only extends the application of quantum computing to multi-agent decision-making but also provides a practical solution for the NISQ era.展开更多
In this paper, we provide a Word Emotion Topic (WET) model to predict the complex word e- motion information from text, and discover the dis- trbution of emotions among different topics. A complex emotion is defined...In this paper, we provide a Word Emotion Topic (WET) model to predict the complex word e- motion information from text, and discover the dis- trbution of emotions among different topics. A complex emotion is defined as the combination of one or more singular emotions from following 8 basic emotion categories: joy, love, expectation, sur- prise, anxiety, sorrow, anger and hate. We use a hi- erarchical Bayesian network to model the emotions and topics in the text. Both the complex emotions and topics are drawn from raw texts, without con- sidering any complicated language features. Our ex- periment shows promising results of word emotion prediction, which outperforms the traditional parsing methods such as the Hidden Markov Model and the Conditional Random Fields(CRFs) on raw text. We also explore the topic distribution by examining the emotion topic variation in an emotion topic diagram.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62473371 and 61673389)。
文摘Although quantum Bayesian networks provide a promising paradigm for multi-agent decision-making,their practical application faces two challenges in the noisy intermediate-scale quantum(NISQ)era.Limited qubit resources restrict direct application to large-scale inference tasks.Additionally,no quantum methods are currently available for multi-agent collaborative decision-making.To address these,we propose a hybrid quantum–classical multi-agent decision-making framework based on hierarchical Bayesian networks,comprising two novel methods.The first one is a hybrid quantum–classical inference method based on hierarchical Bayesian networks.It decomposes large-scale hierarchical Bayesian networks into modular subnetworks.The inference for each subnetwork can be performed on NISQ devices,and the intermediate results are converted into classical messages for cross-layer transmission.The second one is a multi-agent decision-making method using the variational quantum eigensolver(VQE)in the influence diagram.This method models the collaborative decision-making with the influence diagram and encodes the expected utility of diverse actions into a Hamiltonian and subsequently determines the intra-group optimal action efficiently.Experimental validation on the IonQ quantum simulator demonstrates that the hierarchical method outperforms the non-hierarchical method at the functional inference level,and the VQE method can obtain the optimal strategy exactly at the collaborative decision-making level.Our research not only extends the application of quantum computing to multi-agent decision-making but also provides a practical solution for the NISQ era.
基金supported by the Ministry of Education,Science,Sports and Culture,Grant-in-Aid for Scientific Research under Grant No.22240021the Grant-in-Aid for Challenging Exploratory Research under Grant No.21650030
文摘In this paper, we provide a Word Emotion Topic (WET) model to predict the complex word e- motion information from text, and discover the dis- trbution of emotions among different topics. A complex emotion is defined as the combination of one or more singular emotions from following 8 basic emotion categories: joy, love, expectation, sur- prise, anxiety, sorrow, anger and hate. We use a hi- erarchical Bayesian network to model the emotions and topics in the text. Both the complex emotions and topics are drawn from raw texts, without con- sidering any complicated language features. Our ex- periment shows promising results of word emotion prediction, which outperforms the traditional parsing methods such as the Hidden Markov Model and the Conditional Random Fields(CRFs) on raw text. We also explore the topic distribution by examining the emotion topic variation in an emotion topic diagram.