We theoretically investigate three-dimensional (3D) focusing of pulsed molecular beam using a series of hexapoles with different orientations. Transversely oriented hexapoles provide both the transverse and longitud...We theoretically investigate three-dimensional (3D) focusing of pulsed molecular beam using a series of hexapoles with different orientations. Transversely oriented hexapoles provide both the transverse and longitudinal focusing force and a longitudinally oriented one provides only the transverse force. The hexapole focusing position are designed to realize the simultaneous focusing in three directions. The additional longitudinal focusing compared with the conventional hexapole can suppress the effect of chromatic aberration induced by the molecular longitudinal velocity spread, thus improving the state-selection purity as well as the beam density. Performance comparison of state selection between this 3D focusing hexapole and a conventional one is made using numerical trajectory simulations, choosing CHF3 molecules as a tester. It is confirmed that our proposal can improve the state-selection purity from 68.2% to 96.1% and the beam density by a factor of 2.3.展开更多
We experimentally and numerically investigate CH_3I molecular alignment by using a femtosecond laser and a hexapole. The hexapole provides the single |111〉rotational state condition at 4.5-kV hexapole rod voltage. Ba...We experimentally and numerically investigate CH_3I molecular alignment by using a femtosecond laser and a hexapole. The hexapole provides the single |111〉rotational state condition at 4.5-kV hexapole rod voltage. Based on this single rotational state, an enhanced alignment degree of 0.73 is achieved. Our experimental results are in agreement with the simulation results. We experimentally obtain the ion velocity map images and show the influence of the initial rotational-state population. With the I+ion images and angular distributions at different pump-probe delay time, the alignment and anti-alignment phenomena are further demonstrated. The molecules will be under field-free conditions when the laser effect disappears completely at the full revival time. Our work shows that the quantum control and spatial control on CH_3I molecules can be realized and molecular coordinate frame can be obtained for further molecular experiment.展开更多
The ionization processes of NH3 molecule are studied by photoelectron velocity map imaging technique in a linearly polarized 400-nm femtosecond laser field. The two-dimensional photoelectron images from ammonia molecu...The ionization processes of NH3 molecule are studied by photoelectron velocity map imaging technique in a linearly polarized 400-nm femtosecond laser field. The two-dimensional photoelectron images from ammonia molecules under different laser intensities are obtained. In the slow electron region, the values of kinetic energy of photoelectrons corresponding to peaks 1, 2, 3, and 4 are 0.27, 0.86, 1.16, and 1.6 eV, respectively. With both the kinetic energy and angular distribution of photoelectrons from NH3 molecules, we can confirm that the two-photon excited intermediate Rydberg state is A^1 A2" (v2'=3) state for photoelectron peaks 2, 3, 4, and the three peaks are marked as 1223 (2 + 2), 1123 (2 + 2), and 1023 (2 + 2) multi-photon processes, respectively. Then, peak 1 is found by adding a hexapole between the source chamber and the detection chamber to realize the rotational state selection and beam focusing. Peak 1 is labeled as the 1323 (3 + 1) multi-photon process through the intermediate Rydberg state E^1A1'. The phenomena of channel switching are found in the slow electron kinetic energy distributions. Our calculations and experimental results indicate that the stretching vibrational mode of ammonia molecules varies with channels, while the umbrella vibration does not. In addition, we consider and discuss the ac-Stark effect in a strong laser field. Peaks 5 and 6 are marked as (2 + 2 + 1) and (2 + 2 + 2) above threshold ionization processes in the fast electron region.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11504118,11574099,and 11474115)
文摘We theoretically investigate three-dimensional (3D) focusing of pulsed molecular beam using a series of hexapoles with different orientations. Transversely oriented hexapoles provide both the transverse and longitudinal focusing force and a longitudinally oriented one provides only the transverse force. The hexapole focusing position are designed to realize the simultaneous focusing in three directions. The additional longitudinal focusing compared with the conventional hexapole can suppress the effect of chromatic aberration induced by the molecular longitudinal velocity spread, thus improving the state-selection purity as well as the beam density. Performance comparison of state selection between this 3D focusing hexapole and a conventional one is made using numerical trajectory simulations, choosing CHF3 molecules as a tester. It is confirmed that our proposal can improve the state-selection purity from 68.2% to 96.1% and the beam density by a factor of 2.3.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574116,11534004,10704028,and 11474123)the Natural Science Foundation of Jilin Province,China(Grant No.20170101154JC)
文摘We experimentally and numerically investigate CH_3I molecular alignment by using a femtosecond laser and a hexapole. The hexapole provides the single |111〉rotational state condition at 4.5-kV hexapole rod voltage. Based on this single rotational state, an enhanced alignment degree of 0.73 is achieved. Our experimental results are in agreement with the simulation results. We experimentally obtain the ion velocity map images and show the influence of the initial rotational-state population. With the I+ion images and angular distributions at different pump-probe delay time, the alignment and anti-alignment phenomena are further demonstrated. The molecules will be under field-free conditions when the laser effect disappears completely at the full revival time. Our work shows that the quantum control and spatial control on CH_3I molecules can be realized and molecular coordinate frame can be obtained for further molecular experiment.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11574116, 11534004, and 10704028).
文摘The ionization processes of NH3 molecule are studied by photoelectron velocity map imaging technique in a linearly polarized 400-nm femtosecond laser field. The two-dimensional photoelectron images from ammonia molecules under different laser intensities are obtained. In the slow electron region, the values of kinetic energy of photoelectrons corresponding to peaks 1, 2, 3, and 4 are 0.27, 0.86, 1.16, and 1.6 eV, respectively. With both the kinetic energy and angular distribution of photoelectrons from NH3 molecules, we can confirm that the two-photon excited intermediate Rydberg state is A^1 A2" (v2'=3) state for photoelectron peaks 2, 3, 4, and the three peaks are marked as 1223 (2 + 2), 1123 (2 + 2), and 1023 (2 + 2) multi-photon processes, respectively. Then, peak 1 is found by adding a hexapole between the source chamber and the detection chamber to realize the rotational state selection and beam focusing. Peak 1 is labeled as the 1323 (3 + 1) multi-photon process through the intermediate Rydberg state E^1A1'. The phenomena of channel switching are found in the slow electron kinetic energy distributions. Our calculations and experimental results indicate that the stretching vibrational mode of ammonia molecules varies with channels, while the umbrella vibration does not. In addition, we consider and discuss the ac-Stark effect in a strong laser field. Peaks 5 and 6 are marked as (2 + 2 + 1) and (2 + 2 + 2) above threshold ionization processes in the fast electron region.