Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesi...Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesized via a facile approach involving the solvothermal method and subsequent sulfuration treatment.The resultant CuS/Cu_(9)S_(5) exhibited superb microwave absorbing capacity with a minimum reflection loss(RLmin)of-59.38 dB at 2.7 mm.The maximum effective absorption bandwidth(EABmax)was 7.44 GHz(10.56-18 GHz)when the thickness was reduced to 2.3 mm.The outstanding microwave absorbing ability of CuS/Cu_(9)S_(5) composites is mainly related to its unique hexapod shape and the formation of heterogeneous interfaces.The unique hexapod shape significantly promotes the multi-reflection of the incident electromagnetic wave(EMW)increasing the attenuation path of EMWs in the material.Hetero-geneous interfaces between CuS/Cu_(9)S_(5) enable powerful interface polarization,contributing to the atten-uation of EMWs propagating in the medium.In addition,the EMW absorption performance of CuS/Cu_(9)S_(5) composites is also inseparable from the conduction loss.This study provides a strong reference for the research of EMW absorbent materials based on transition metal sulfides.展开更多
Metal phosphosulfides have been recognized as advanced anode materials for sodium/potassium ion batteries due to their high theoretical capacities and the incorporation of the advantage of metal sulfides and phosphate...Metal phosphosulfides have been recognized as advanced anode materials for sodium/potassium ion batteries due to their high theoretical capacities and the incorporation of the advantage of metal sulfides and phosphates. However, they also suffer from the shortcomings of frustrating cycling stability due to the large volume expansion and unsatisfactory electrical conductivity. Herein, hexapod cobalt phosphosulfide nanodots based nanorods encapsulating into N, P, and S hetero-atoms tri-doped carbon framework(Co P/CoS_(2) @NPSC) have been triumphantly designed and synthesized. The six nanorods constructed hexapod framework and multi-atom doped carbon matrix not only provides more active sites, but also contribute to maintain the structure integrity from avoiding the agglomeration of internal Co P and CoS_(2) nanodots. The synergistic effect between Co P and CoS_(2) components, as well as the Co P/CoS_(2) and the NPSC carbon framework can improve the electrochemical conductivity. Besides, the kinetics analysis demonstrated that N/P/S tri-doping could greatly increase the interlayer distance and introduce enough active sites, which effectively facilitate the transport, adsorption, insertion and diffusion of Na^(+)and K^(+).Co P/CoS_(2) @NPSC demonstrated excellent electrochemical properties and battery performances including excellent cycle stability with 404.63 m Ah/g at 5.0 A/g around 700 cycles for SIBs and 115.33 m Ah/g at5.0 A/g around 800 cycles for PIBs. This presented strategy establishes a novel and adaptable method for the integration of doped carbon with metal phosphosulfide and guides a new research approach and direction for secondary batteries electrode materials.展开更多
A fuzzy adaptive admittance control method based on real-time estimation is proposed for the motion of the hexapod wheeled-legged robot in various environments.Firstly,the mechanical structure of the robot is designed...A fuzzy adaptive admittance control method based on real-time estimation is proposed for the motion of the hexapod wheeled-legged robot in various environments.Firstly,the mechanical structure of the robot is designed,and a control system framework is proposed according to the different motion environments.To address the adaptability issue of the robot foot contact with the ground,a position-based admittance control method is proposed.Secondly,to improve the tracking performance of the robot foot contact force when the ground environment changes,a fuzzy adaptive admittance parameter adjustment method is proposed.Furthermore,to address the problem of sudden changes in the tracking difference of the foot contact force when the ground environment changes,a real-time estimation method is proposed to estimate the dynamic foot contact force.Finally,a simulation experiment is conducted in MATLAB and Simscape to verify the effectiveness of the robot motion control system,admittance control,fuzzy adaptive admittance parameters adjustment,and the realtime estimation method.Through multi-scenario experiments with the robot prototype,the control method demonstrates its effectiveness and adaptability in various environments.展开更多
Animals exhibit remarkable mobility and adaptability to their environments.Leveraging these advantages,various types of robots have been developed.To achieve path tracking control for the underwater hexapod robot,a pa...Animals exhibit remarkable mobility and adaptability to their environments.Leveraging these advantages,various types of robots have been developed.To achieve path tracking control for the underwater hexapod robot,a path tracking control system has been designed.Within this system,a Line-of-Sight(LOS)guidance system is utilized to generate the desired heading angle during the path tracking process.A heading tracking controller and a speed tracking controller are designed based on the super-twisting sliding mode method.Fuzzy logic is employed to establish the nonlinear relationship between the output of the upper-level controller,which includes force/torque,and the input parameters of the Central Pattern Generator(CPG)network.Finally,the effectiveness of the proposed method is verified through simulation and experimentation.The results demonstrate that the robot exhibits good tracking accuracy,as well as stability and coordination in motion.The designed path tracking system enables the underwater hexapod robot to rapidly and accurately track the desired path.展开更多
Most gait studies of multi-legged robots in past neglected the dexterity of robot body and the relationship between stride length and body height.This paper investigates the performance of a radial symmetrical hexapod...Most gait studies of multi-legged robots in past neglected the dexterity of robot body and the relationship between stride length and body height.This paper investigates the performance of a radial symmetrical hexapod robot based on the dexterity of parallel mechanism.Assuming the constraints between the supporting feet and the ground with hinges,the supporting legs and the hexapod body are taken as a parallel mechanism,and each swing leg is regarded as a serial manipulator.The hexapod robot can be considered as a series of hybrid serial-parallel mechanisms while walking on the ground.Locomotion performance can be got by analyzing these equivalent mechanisms.The kinematics of the whole robotic system is established,and the influence of foothold position on the workspace of robot body is analyzed.A new method to calculate the stride length of multi-legged robots is proposed by analyzing the relationship between the workspaces of two adjacent equivalent parallel mechanisms in one gait cycle.Referring to service region and service sphere,weight service sphere and weight service region are put forward to evaluate the dexterity of robot body.The dexterity of single point in workspace and the dexterity distribution in vertical and horizontal projection plane are demonstrated.Simulation shows when the foothold offset goes up to 174 mm,the dexterity of robot body achieves its maximum value 0.164 4 in mixed gait.The proposed methods based on parallel mechanisms can be used to calculate the stride length and the dexterity of multi-legged robot,and provide new approach to determine the stride length,body height,footholds in gait planning of multi-legged robot.展开更多
Robots are widely used to replace people in some burdensome or hamaful areas. Not only the moving ability but also the manipulating ability is needed in the missions of complex multitasking requirements. In the last d...Robots are widely used to replace people in some burdensome or hamaful areas. Not only the moving ability but also the manipulating ability is needed in the missions of complex multitasking requirements. In the last decades, wheel-legged hexapod robots are extensively studied to ineet this condition.展开更多
The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots call...The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots called Smart Gait.Smart Gait contains three modules:swing leg trajectory optimization,gait period&duty optimization,and gait sequence optimization.The full dynamics of a single leg,and the centroid dynamics of the overall robot are considered in the respective modules.The Smart Gait not only helps the robot to decrease the energy consumption when in locomotion,mostly,it enables the hexapod robot to determine its gait pattern transitions based on its current state,instead of repeating the formalistic clock-set step cycles.Our Smart Gait framework allows the hexapod robot to behave nimbly as a living animal when in 3D movements for the first time.The Smart Gait framework combines offline and online optimizations without any fussy data-driven training procedures,and it can run efficiently on board in real-time after deployment.Various experiments are carried out on the hexapod robot LittleStrong.The results show that the energy consumption is reduced by 15.9%when in locomotion.Adaptive gait patterns can be generated spontaneously both in regular and challenge environments,and when facing external interferences.展开更多
Realistically there are many robot joints in the biologically inspired hexapod robot, so they will generate many complexities in the calculations of the gait and the path planning and the control variables. The softwa...Realistically there are many robot joints in the biologically inspired hexapod robot, so they will generate many complexities in the calculations of the gait and the path planning and the control variables. The software Solidworks and MSC. ADAMS are adopted to simulate and analyze the prototype model of the robot. By the simulations used in our design, the applicability of the tripod gait is validated, and the scheme which uses cubic spline curve as the endpoint of foot's path is feasible. The principles, methods, and processes of the simulation of hexapod robot are illustrated. A methodology is proposed to get the robot inverse solution in ADAMS, and to simplify the theoretical calculation, and further more to improve the efficiency of the design.展开更多
Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance c...Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance control is established. Then, the indirect adaptive control algorithm is derived. Through the analysis of its parameters, it can be noticed that the algorithm does not meet the requirements of the robot compliance control in a complex environment. Therefore, the fuzzy control algorithm is used to adjust the adaptive control parameters. The satisfied system response can be obtained based on the adjustment in real time according to the error between input and output. Comparative experiments and analysis of traditional adaptive control and the improved adaptive control algorithm are presented. It can be verified that not only desired contact force can be reached quickly in different environments, but also smaller contact impact and sliding avoidance are guaranteed, which means that the control strategy has great significance to enhance the adaptability of the hexapod robot.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52377026 and 52301192)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+3 种基金the Postdoctoral Fellow-ship Program of CPSF under Grant Number(No.GZB20240327)the Shandong Postdoctoral Science Foundation(No.SDCX-ZG-202400275)the Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesized via a facile approach involving the solvothermal method and subsequent sulfuration treatment.The resultant CuS/Cu_(9)S_(5) exhibited superb microwave absorbing capacity with a minimum reflection loss(RLmin)of-59.38 dB at 2.7 mm.The maximum effective absorption bandwidth(EABmax)was 7.44 GHz(10.56-18 GHz)when the thickness was reduced to 2.3 mm.The outstanding microwave absorbing ability of CuS/Cu_(9)S_(5) composites is mainly related to its unique hexapod shape and the formation of heterogeneous interfaces.The unique hexapod shape significantly promotes the multi-reflection of the incident electromagnetic wave(EMW)increasing the attenuation path of EMWs in the material.Hetero-geneous interfaces between CuS/Cu_(9)S_(5) enable powerful interface polarization,contributing to the atten-uation of EMWs propagating in the medium.In addition,the EMW absorption performance of CuS/Cu_(9)S_(5) composites is also inseparable from the conduction loss.This study provides a strong reference for the research of EMW absorbent materials based on transition metal sulfides.
基金supported by the National Natural Science Foundation of China (Nos. 52472194, 52101243)Natural Science Foundation of Guangdong Province, China (No. 2023A1515012619)the Science and Technology Planning Project of Guangzhou (No. 202201010565)。
文摘Metal phosphosulfides have been recognized as advanced anode materials for sodium/potassium ion batteries due to their high theoretical capacities and the incorporation of the advantage of metal sulfides and phosphates. However, they also suffer from the shortcomings of frustrating cycling stability due to the large volume expansion and unsatisfactory electrical conductivity. Herein, hexapod cobalt phosphosulfide nanodots based nanorods encapsulating into N, P, and S hetero-atoms tri-doped carbon framework(Co P/CoS_(2) @NPSC) have been triumphantly designed and synthesized. The six nanorods constructed hexapod framework and multi-atom doped carbon matrix not only provides more active sites, but also contribute to maintain the structure integrity from avoiding the agglomeration of internal Co P and CoS_(2) nanodots. The synergistic effect between Co P and CoS_(2) components, as well as the Co P/CoS_(2) and the NPSC carbon framework can improve the electrochemical conductivity. Besides, the kinetics analysis demonstrated that N/P/S tri-doping could greatly increase the interlayer distance and introduce enough active sites, which effectively facilitate the transport, adsorption, insertion and diffusion of Na^(+)and K^(+).Co P/CoS_(2) @NPSC demonstrated excellent electrochemical properties and battery performances including excellent cycle stability with 404.63 m Ah/g at 5.0 A/g around 700 cycles for SIBs and 115.33 m Ah/g at5.0 A/g around 800 cycles for PIBs. This presented strategy establishes a novel and adaptable method for the integration of doped carbon with metal phosphosulfide and guides a new research approach and direction for secondary batteries electrode materials.
基金National Natural Science Foundation of China(No.U1831123)。
文摘A fuzzy adaptive admittance control method based on real-time estimation is proposed for the motion of the hexapod wheeled-legged robot in various environments.Firstly,the mechanical structure of the robot is designed,and a control system framework is proposed according to the different motion environments.To address the adaptability issue of the robot foot contact with the ground,a position-based admittance control method is proposed.Secondly,to improve the tracking performance of the robot foot contact force when the ground environment changes,a fuzzy adaptive admittance parameter adjustment method is proposed.Furthermore,to address the problem of sudden changes in the tracking difference of the foot contact force when the ground environment changes,a real-time estimation method is proposed to estimate the dynamic foot contact force.Finally,a simulation experiment is conducted in MATLAB and Simscape to verify the effectiveness of the robot motion control system,admittance control,fuzzy adaptive admittance parameters adjustment,and the realtime estimation method.Through multi-scenario experiments with the robot prototype,the control method demonstrates its effectiveness and adaptability in various environments.
基金supported by the National Natural Science Foundation of China No.E1102/52071108National Defense Science and Industry Bureau Stability Support Project No.JCKYS2020SXJQR-04Natural Science Foundation of Heilongjiang Province No.JJ2021JQ0075.
文摘Animals exhibit remarkable mobility and adaptability to their environments.Leveraging these advantages,various types of robots have been developed.To achieve path tracking control for the underwater hexapod robot,a path tracking control system has been designed.Within this system,a Line-of-Sight(LOS)guidance system is utilized to generate the desired heading angle during the path tracking process.A heading tracking controller and a speed tracking controller are designed based on the super-twisting sliding mode method.Fuzzy logic is employed to establish the nonlinear relationship between the output of the upper-level controller,which includes force/torque,and the input parameters of the Central Pattern Generator(CPG)network.Finally,the effectiveness of the proposed method is verified through simulation and experimentation.The results demonstrate that the robot exhibits good tracking accuracy,as well as stability and coordination in motion.The designed path tracking system enables the underwater hexapod robot to rapidly and accurately track the desired path.
基金Supported by National Science Foundation for Distinguished Young Scholar,China(Grant No.51125020)National Natural Science Foundation of China(Grant No.51305009)CAST Foundation
文摘Most gait studies of multi-legged robots in past neglected the dexterity of robot body and the relationship between stride length and body height.This paper investigates the performance of a radial symmetrical hexapod robot based on the dexterity of parallel mechanism.Assuming the constraints between the supporting feet and the ground with hinges,the supporting legs and the hexapod body are taken as a parallel mechanism,and each swing leg is regarded as a serial manipulator.The hexapod robot can be considered as a series of hybrid serial-parallel mechanisms while walking on the ground.Locomotion performance can be got by analyzing these equivalent mechanisms.The kinematics of the whole robotic system is established,and the influence of foothold position on the workspace of robot body is analyzed.A new method to calculate the stride length of multi-legged robots is proposed by analyzing the relationship between the workspaces of two adjacent equivalent parallel mechanisms in one gait cycle.Referring to service region and service sphere,weight service sphere and weight service region are put forward to evaluate the dexterity of robot body.The dexterity of single point in workspace and the dexterity distribution in vertical and horizontal projection plane are demonstrated.Simulation shows when the foothold offset goes up to 174 mm,the dexterity of robot body achieves its maximum value 0.164 4 in mixed gait.The proposed methods based on parallel mechanisms can be used to calculate the stride length and the dexterity of multi-legged robot,and provide new approach to determine the stride length,body height,footholds in gait planning of multi-legged robot.
文摘Robots are widely used to replace people in some burdensome or hamaful areas. Not only the moving ability but also the manipulating ability is needed in the missions of complex multitasking requirements. In the last decades, wheel-legged hexapod robots are extensively studied to ineet this condition.
基金Supported by National Key Research and Development Program of China(Grant No.2021YFF0306202).
文摘The current gait planning for legged robots is mostly based on human presets,which cannot match the flexible characteristics of natural mammals.This paper proposes a gait optimization framework for hexapod robots called Smart Gait.Smart Gait contains three modules:swing leg trajectory optimization,gait period&duty optimization,and gait sequence optimization.The full dynamics of a single leg,and the centroid dynamics of the overall robot are considered in the respective modules.The Smart Gait not only helps the robot to decrease the energy consumption when in locomotion,mostly,it enables the hexapod robot to determine its gait pattern transitions based on its current state,instead of repeating the formalistic clock-set step cycles.Our Smart Gait framework allows the hexapod robot to behave nimbly as a living animal when in 3D movements for the first time.The Smart Gait framework combines offline and online optimizations without any fussy data-driven training procedures,and it can run efficiently on board in real-time after deployment.Various experiments are carried out on the hexapod robot LittleStrong.The results show that the energy consumption is reduced by 15.9%when in locomotion.Adaptive gait patterns can be generated spontaneously both in regular and challenge environments,and when facing external interferences.
基金Sponsored by the Ministerial Level Advanced Research Foundation(6140528)
文摘Realistically there are many robot joints in the biologically inspired hexapod robot, so they will generate many complexities in the calculations of the gait and the path planning and the control variables. The software Solidworks and MSC. ADAMS are adopted to simulate and analyze the prototype model of the robot. By the simulations used in our design, the applicability of the tripod gait is validated, and the scheme which uses cubic spline curve as the endpoint of foot's path is feasible. The principles, methods, and processes of the simulation of hexapod robot are illustrated. A methodology is proposed to get the robot inverse solution in ADAMS, and to simplify the theoretical calculation, and further more to improve the efficiency of the design.
基金Project(51221004) supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of ChinaProject(2010R50036) supported by the Program for Zhejiang Leading Team of S&T Innovation,China
文摘Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance control is established. Then, the indirect adaptive control algorithm is derived. Through the analysis of its parameters, it can be noticed that the algorithm does not meet the requirements of the robot compliance control in a complex environment. Therefore, the fuzzy control algorithm is used to adjust the adaptive control parameters. The satisfied system response can be obtained based on the adjustment in real time according to the error between input and output. Comparative experiments and analysis of traditional adaptive control and the improved adaptive control algorithm are presented. It can be verified that not only desired contact force can be reached quickly in different environments, but also smaller contact impact and sliding avoidance are guaranteed, which means that the control strategy has great significance to enhance the adaptability of the hexapod robot.