期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Patterns in Heuristic Optimization Algorithms: A Comprehensive Analysis
1
作者 Robertas Damasevicius 《Computers, Materials & Continua》 2025年第2期1493-1538,共46页
Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality ... Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions.While heuristic optimization algorithms vary in their specific details,they often exhibit common patterns that are essential to their effectiveness.This paper aims to analyze and explore common patterns in heuristic optimization algorithms.Through a comprehensive review of the literature,we identify the patterns that are commonly observed in these algorithms,including initialization,local search,diversity maintenance,adaptation,and stochasticity.For each pattern,we describe the motivation behind it,its implementation,and its impact on the search process.To demonstrate the utility of our analysis,we identify these patterns in multiple heuristic optimization algorithms.For each case study,we analyze how the patterns are implemented in the algorithm and how they contribute to its performance.Through these case studies,we show how our analysis can be used to understand the behavior of heuristic optimization algorithms and guide the design of new algorithms.Our analysis reveals that patterns in heuristic optimization algorithms are essential to their effectiveness.By understanding and incorporating these patterns into the design of new algorithms,researchers can develop more efficient and effective optimization algorithms. 展开更多
关键词 heuristic optimization algorithms design patterns INITIALIZATION local search diversity maintenance ADAPTATION STOCHASTICITY exploration EXPLOITATION search space metaheuristics
在线阅读 下载PDF
A review on applications of heuristic optimization algorithms for optimal power flow in modern power systems 被引量:9
2
作者 Ming NIU Can WAN Zhao XU 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2014年第4期289-297,共9页
Optimal power flow(OPF)is one of the key tools for optimal operation and planning of modern power systems.Due to the high complexity with continuous and discrete control variables,modern heuristic optimization algorit... Optimal power flow(OPF)is one of the key tools for optimal operation and planning of modern power systems.Due to the high complexity with continuous and discrete control variables,modern heuristic optimization algorithms(HOAs)have been widely employed for the solution of OPF.This paper provides an overview of the latest applications of advanced HOAs in OPF problems.The most frequently applied HOAs for solving the OPF problem in recent years are covered and briefly introduced,including genetic algorithm(GA),differential evolution(DE),particle swarm optimization(PSO),and evolutionary programming(EP),etc. 展开更多
关键词 heuristic optimization algorithm Optimal power flow Multi-objective optimization Constraint optimization
原文传递
Cross-platform mission planning for UAVs under carrier delivery mode
3
作者 Junhong Jin Genlai Zhang +6 位作者 Xin Li Xichao Su Chen Lu Yujie Cheng Yu Ding Lei Wang Xinwei Wang 《Defence Technology(防务技术)》 2025年第11期76-97,共22页
As battlefield scale enlarges,cross-platform collaborative combat provides an appealing paradigm for modern warfare.Complicated constraints and vast solution space pose great challenge for reasonable and efficient mis... As battlefield scale enlarges,cross-platform collaborative combat provides an appealing paradigm for modern warfare.Complicated constraints and vast solution space pose great challenge for reasonable and efficient mission planning,where path planning and target assignment are tightly coupled.In this paper,we focus on UAV mission planning under carrier delivery mode(e.g.,by aircraft carrier,ground vehicle,or transport aircraft) and design a three-layer hierarchical solution framework.In the first layer,we simultaneously determine delivery points and target set division by clustering.To address the safety concerns of radar risk and UAV endurance,an improved density peak clustering algorithm is developed by constraint fusio n.In the second layer,mission planning within each cluster is viewed as a coope rative multiple-task assignment problem.A hybrid heuristic algorithm that integrates a voting-based heuristic solution generation strategy(VHSG) and a stochastic variable neighborhood search(SVNS),called VHSG-SVNS,is proposed for rapid solution.Based on the results of the first two layers,the third layer transforms carrier path planning into a multiple-vehicle routing problem with time window.The cost between any two nodes is calculated by the A~* algorithm,and the genetic algorithm is then implemented to determine the global route.Finally,a practical mission scenario containing 200 targets is used to validate the effectiveness of the designed framework,where three layers cooperate well with each other to generate satisfactory combat scheduling.Comparisons are made in each layer to highlight optimum-seeking capability and efficiency of the proposed algorithms.Works done in this paper provide a simple but efficient solution framework for cross-platform cooperative mission planning problems,and can be potentially extended to other applications such as post-disaster search and rescue,forest surveillance and firefighting,logistics pick and delivery,etc. 展开更多
关键词 Cross-platform mission planning UAV Carrier delivery mode Clustering algorithm heuristic optimization algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部