Smart edge computing(SEC)is a novel paradigm for computing that could transfer cloud-based applications to the edge network,supporting computation-intensive services like face detection and natural language processing...Smart edge computing(SEC)is a novel paradigm for computing that could transfer cloud-based applications to the edge network,supporting computation-intensive services like face detection and natural language processing.A core feature of mobile edge computing,SEC improves user experience and device performance by offloading local activities to edge processors.In this framework,blockchain technology is utilized to ensure secure and trustworthy communication between edge devices and servers,protecting against potential security threats.Additionally,Deep Learning algorithms are employed to analyze resource availability and optimize computation offloading decisions dynamically.IoT applications that require significant resources can benefit from SEC,which has better coverage.Although access is constantly changing and network devices have heterogeneous resources,it is not easy to create consistent,dependable,and instantaneous communication between edge devices and their processors,specifically in 5G Heterogeneous Network(HN)situations.Thus,an Intelligent Management of Resources for Smart Edge Computing(IMRSEC)framework,which combines blockchain,edge computing,and Artificial Intelligence(AI)into 5G HNs,has been proposed in this paper.As a result,a unique dual schedule deep reinforcement learning(DS-DRL)technique has been developed,consisting of a rapid schedule learning process and a slow schedule learning process.The primary objective is to minimize overall unloading latency and system resource usage by optimizing computation offloading,resource allocation,and application caching.Simulation results demonstrate that the DS-DRL approach reduces task execution time by 32%,validating the method’s effectiveness within the IMRSEC framework.展开更多
Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and ...Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm.展开更多
Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power li...Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.展开更多
In dynamic 5G network environments,user mobility and heterogeneous network topologies pose dual challenges to the effort of improving performance of mobile edge caching.Existing studies often overlook the dynamic natu...In dynamic 5G network environments,user mobility and heterogeneous network topologies pose dual challenges to the effort of improving performance of mobile edge caching.Existing studies often overlook the dynamic nature of user locations and the potential of device-to-device(D2D)cooperative caching,limiting the reduction of transmission latency.To address this issue,this paper proposes a joint optimization scheme for edge caching that integrates user mobility prediction with deep reinforcement learning.First,a Transformer-based geolocation prediction model is designed,leveraging multi-head attention mechanisms to capture correlations in historical user trajectories for accurate future location prediction.Then,within a three-tier heterogeneous network,we formulate a latency minimization problem under a D2D cooperative caching architecture and develop a mobility-aware Deep Q-Network(DQN)caching strategy.This strategy takes predicted location information as state input and dynamically adjusts the content distribution across small base stations(SBSs)andmobile users(MUs)to reduce end-to-end delay inmulti-hop content retrieval.Simulation results show that the proposed DQN-based method outperforms other baseline strategies across variousmetrics,achieving a 17.2%reduction in transmission delay compared to DQNmethods withoutmobility integration,thus validating the effectiveness of the joint optimization of location prediction and caching decisions.展开更多
The dual frequency Heterogeneous Network(HetNet),including sub-6 GHz networks together with Millimeter Wave(mmWave),achieves the high data rates of user in the networks with hotspots.The cache-enabled HetNets with hot...The dual frequency Heterogeneous Network(HetNet),including sub-6 GHz networks together with Millimeter Wave(mmWave),achieves the high data rates of user in the networks with hotspots.The cache-enabled HetNets with hotspots are investigated using an analytical framework in which Macro Base Stations(MBSs)and hotspot centers are treated as two independent homogeneous Poisson Point Processes(PPPs),and locations of Small Base Stations(SBSs)and users are modeled as two Poisson Cluster Processes(PCPs).Under the PCP-based modeling method and the Most Popular Caching(MPC)scheme,we propose a cache-enabled association strategy for HetNets with limited storage capacity.The performance of association probability and coverage probability is explicitly derived,and Monte Carlo simulation is utilized to verify that the results are correct.The outcomes of the simulation present the influence of antenna configuration and cache capacities of MBSs and SBSs on network performance.Numerical optimization of the standard deviation ratio of SBSs and users of association probability is enabled by our analysis.展开更多
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d...In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data rate.We consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)density.Such user centric deployment of mmWave SBSs inevitably incurs correlation between UE and SBSs.For a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave communication.By using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power association.For UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy efficiency.We also provide Monte Carlo simulation results to validate the accuracy of the derived expressions.Furthermore,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave HCNets.Our results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.展开更多
Although small cell offloading technology can alleviate the congestion in macrocell, aggressively offloading data traffic from macrocell to small cell can also degrade the performance of small cell due to the heavy lo...Although small cell offloading technology can alleviate the congestion in macrocell, aggressively offloading data traffic from macrocell to small cell can also degrade the performance of small cell due to the heavy load. Because of collision and backoff, the degradation is significant especially in network with contention-based channel access, and finally decreases throughput of the whole network. To find an optimal fraction of traffic to be offloaded in heterogeneous network, we combine Markov chain with the Poisson point process model to analyze contention-based throughput in irregularly deployment networks. Then we derive the close-form solution of the throughput and find that it is a function of the transmit power and density of base stations.Based on this, we propose the load-aware offloading strategies via power control and base station density adjustment. The numerical results verify our analysis and show a great performance gain compared with non-load-aware offloading.展开更多
In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm bas...In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm based on markov process is proposed and discussed in this paper. This algorithm takes into account that the status transformation of available network will affect the quality of service(Qo S) of vehicle terminal's communication service. Firstly, Markov process is used to predict the transformation of wireless network's status after the decision via transition probability. Then the weights of evaluating parameters will be determined by fuzzy logic method. Finally, by comparing the total incomes of each wireless network, including handoff decision incomes, handoff execution incomes and communication service incomes after handoff, the optimal network to handoff will be selected. Simulation results show that: the algorithm proposed, compared to the existing algorithm, is able to receive a higher level of load balancing and effectively improves the average blocking rate, packet loss rate and ping-pang effect.展开更多
Traditional cellular network requires that a user equipment(UE) should associate to the same base station(BS) in both the downlink(DL) and the uplink(UL). Based on dual connectivity(DC) introduced in LTE-Advanced R12,...Traditional cellular network requires that a user equipment(UE) should associate to the same base station(BS) in both the downlink(DL) and the uplink(UL). Based on dual connectivity(DC) introduced in LTE-Advanced R12, DL/UL decouple access scheme has been proposed, which is especially suitable for heterogeneous networks(Het Nets). This paper is the pioneer to take the DL/UL decouple access scheme into consideration and develop a novel resource allocation algorithm in a two-tier Het Net to improve the total system throughput in the UL and ease the load imbalance between macro base stations(MBSs) and pico base stations(PBSs). A model is formulated as a nonlinear integer programming, and the proposed algorithm is a sub-optimal algorithm based on the graph theory. First, an undirected and weighted interference graph is obtained. Next, the users are grouped to let users with large mutual interferences to be assigned to different clusters. Then, the users in different clusters are allocated to different resource blocks(RBs) by using the Hungarian algorithm. Simulation results show that the proposed algorithm can provide great promotions for both the total system throughput and the average cell edge user throughput and successfully ease the load imbalance between MBSs and PBSs.展开更多
On the multilingual online social networks of global information sharing,the wanton spread of rumors has an enormous negative impact on people's lives.Thus,it is essential to explore the rumor-spreading rules in m...On the multilingual online social networks of global information sharing,the wanton spread of rumors has an enormous negative impact on people's lives.Thus,it is essential to explore the rumor-spreading rules in multilingual environment and formulate corresponding control strategies to reduce the harm caused by rumor propagation.In this paper,considering the multilingual environment and intervention mechanism in the rumor-spreading process,an improved ignorants–spreaders-1–spreaders-2–removers(I2SR)rumor-spreading model with time delay and the nonlinear incidence is established in heterogeneous networks.Firstly,based on the mean-field equations corresponding to the model,the basic reproduction number is derived to ensure the existence of rumor-spreading equilibrium.Secondly,by applying Lyapunov stability theory and graph theory,the global stability of rumor-spreading equilibrium is analyzed in detail.In particular,aiming at the lowest control cost,the optimal control scheme is designed to optimize the intervention mechanism,and the optimal control conditions are derived using the Pontryagin's minimum principle.Finally,some illustrative examples are provided to verify the effectiveness of the theoretical results.The results show that optimizing the intervention mechanism can effectively reduce the densities of spreaders-1 and spreaders-2 within the expected time,which provides guiding insights for public opinion managers to control rumors.展开更多
In this paper,a new communication model is built named grouping D2D(GD2D).Different from the traditional D2D coordination,we proposed GD2D communication in licensed and unlicensed spectrum simultaneously.We formulate ...In this paper,a new communication model is built named grouping D2D(GD2D).Different from the traditional D2D coordination,we proposed GD2D communication in licensed and unlicensed spectrum simultaneously.We formulate a resource allocation problem,which aims at maximizing the energy efficiency(EE)of the system while guaranteeing the quality-of-service(Qos)of users.To efficiently solve this problem,the non-convex optimization problem is first transformed into a convex optimization problem.By transforming the fractional-form problem into an equivalent subtractive-form problem,an iterative power allocation algorithm is proposed to maximize the system EE.Moreover,the optimal closedform power allocation expressions are derived by the Lagrangian approach.Simulation results show that our algorithm achieves higher EE performance than the traditional D2D communication scheme.展开更多
In order to enhance the quality of vertical handoff in an overlay wireless network, multiple attributes are taken into account when optimizing the vertical handoff decision including user-based and network-based QoS f...In order to enhance the quality of vertical handoff in an overlay wireless network, multiple attributes are taken into account when optimizing the vertical handoff decision including user-based and network-based QoS factors. In this paper, we develop a novel vertical handoff algorithm in an integrated 3G cellular and Wireless LAN networks. The proposed algorithm can adjust the weight of each QoS attribute dynamically as the networks change, trace the network condition and choose the optimal access point at transient regions. Simulation results show that this algorithm is able to provide accurate handoff decision, resulting in small unnecessary handoff numbers, good performance of throughput and handoff delay in heterogeneous environments.展开更多
Abstract: Two-tier heterogeneous networks (HetNets), where the current cellular networks, i.e., macrocells, are overlapped with a large number of randomly distributed femtocells, can potentially bring significant b...Abstract: Two-tier heterogeneous networks (HetNets), where the current cellular networks, i.e., macrocells, are overlapped with a large number of randomly distributed femtocells, can potentially bring significant benefits to spectral utilization and system capacity. The interference management and access control for open and closed femtocells in two-tier HetNets were focused. The contributions consist of two parts. Firstly, in order to reduce the uplink interference caused by MUEs (macrocell user equipments) at closed femtocells, an incentive mechanism to implement interference mitigation was proposed. It encourages femtoeells that work with closed-subscriber-group (CSG) to allow the interfering MUEs access in but only via uplink, which can reduce the interference significantly and also benefit the marco-tier. The interference issue was then studied in open-subscriber-group (OSG) femtocells from the perspective of handover and mobility prediction. Inbound handover provides an alternative solution for open femtocells when interference turns up, while this accompanies with PCI (physical cell identity) confusion during inbound handover. To reduce the PCI confusion, a dynamic PCI allocation scheme was proposed, by which the high handin femtocells have the dedicated PCI while the others share the reuse PCIs. A Markov chain based mobility prediction algorithm was designed to decide whether the femtoeell status is with high handover requests. Numerical analysis reveals that the UL interference is managed well for the CSG femtocell and the PCI confusion issue is mitigated greatly in OSG femtocell compared to the conventional approaches.展开更多
In the upcoming 5 G heterogeneous networks, leveraging multiple radio access technologies(RATs) shows to be a crucial issue in achieving RAT multiplexing gain to meet the explosive traffic demand. For always best conn...In the upcoming 5 G heterogeneous networks, leveraging multiple radio access technologies(RATs) shows to be a crucial issue in achieving RAT multiplexing gain to meet the explosive traffic demand. For always best connection(ABC), users tend to activate parallel transmission across all available RATs. However from a system-wide perspective, this might not be optimal given the context of network load, interference and diverse service requirements. To intelligently determine how to use these multi-RAT access resources concurrently, this paper proposes a joint multi-RAT user association and resource allocation strategy with triple decision and integrated context awareness of users and networks. A dynamic game based ant colony algorithm(GACA) is designed to simultaneously maximize the system utility and the fairness of resource allocation. Simulation results show that it's more reasonable to make multi-RAT association decision from a system-wide viewpoint than from an individual one. Compared to max-SNR based and ABC based strategies, the proposed method alleviates network congestion and optimizes resource allocation. It obtains 39%~70% performance improvement.展开更多
The Internet of things(IoT) as an important application of future communication networks puts a high premium on delay issues. Thus when Io T applications meet heterogeneous networks(HetNets) where macro cells are over...The Internet of things(IoT) as an important application of future communication networks puts a high premium on delay issues. Thus when Io T applications meet heterogeneous networks(HetNets) where macro cells are overlaid with small cells, some traditional problems need rethinking. In this paper, we investigate the delay-addressed association problem in two-tier Het Nets considering different backhaul technologies. Specifically, millimeter wave and fiber links are used to provide high-capacity backhaul for small cells. We first formulate the user association problem to minimize the total delay which depends on the probability of successful transmission, the number of user terminals(UTs), and the number of base stations(BSs). And then two algorithms for active mode and mixed mode are proposed to minimize the network delay. Simulation results show that algorithms based on mutual selection between UTs and BSs have better performance than those based on distance. And algorithms for mixed modes have less delay than those for active mode when the number of BSs is large enough, compared to the number of UTs.展开更多
The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challengi...The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challenging and this is the focus of this paper. In this paper, the eavesdropper is hidden from the macro base stations. To relax the unpractical assumption on the channel state information on eavesdropper, a localization based algorithm is first given. Then a joint resource allocation algorithm is proposed in our work, which simultaneously considers physical layer security, cross-tier interference and joint optimization of power and subcarriers under fairness requirements. It is revealed in our work that the considered optimization problem can be efficiently solved relying on convex optimization theory and the Lagrangian dual decomposition method is exploited to solve the considered problem effectively. Moreover, in each iteration the closed-form optimal resource allocation solutions can be obtained based on the Karush-Kuhn-Tucker(KKT) conditions. Finally, the simulation results are given to show the performance advantages of the proposed algorithm.展开更多
To evaluate the trail potential of converged heterogeneous network (CHN) market, the logistic method for adoption modeling of CHN is used. User growth & penetration have been taken as two variants to find saturatio...To evaluate the trail potential of converged heterogeneous network (CHN) market, the logistic method for adoption modeling of CHN is used. User growth & penetration have been taken as two variants to find saturation condition in market. Model is continuous in time but modifications are done for discrete recurrence equation, commonly known as logistic map. Dynamic and static phases are taken into consideration while penetration decay is not covered in this model.展开更多
Convergence and collaboration of heterogeneous networks in the next generation public mobile networks will be a subject of universal significance. Convergence of heterogeneous networks, as an effective approach to imp...Convergence and collaboration of heterogeneous networks in the next generation public mobile networks will be a subject of universal significance. Convergence of heterogeneous networks, as an effective approach to improve the coverage and capacity of public mobile network, to enable communication services, to provide Internet access and to enable mobile computing from everywhere, has drawn widespread attention for its good prospects in application. Construction of security system for wireless heterogeneous networks and development of new security models, key security techniques and approaches are critical and mandatory in heterogeneous networks development. Key technology of wireless heterogeneous networks security covers security routing protocol, access authentication, intrusion detection system, cooperative communication between nodes, etc.展开更多
The research of three-dimensional integrated communication technology plays a key role in achieving the ubiquitous connectivity,ultra-high data rates,and emergency communications in the sixth generation(6G)networks.Ae...The research of three-dimensional integrated communication technology plays a key role in achieving the ubiquitous connectivity,ultra-high data rates,and emergency communications in the sixth generation(6G)networks.Aerial networking provides a prom⁃ising solution to flexible,scalable,low-cost and reliable coverage for wireless devices.The integration of aerial network and terrestrial network has been an inevitable paradigm in the 6G era.However,energy-efficient communications and networking among aerial net⁃work and terrestrial network face great challenges.This paper is dedicated to discussing green communications of the air-ground integrated heterogeneous network(AGIHN).We first provide a brief introduction to the characteristics of AGIHN in 6G networks.Further,we analyze the challenges of green AGIHN from the aspects of green terrestrial networks and green aerial networks.Finally,several solutions to and key technologies of the green AGIHN are discussed.展开更多
The heterogeneous network convergence is the trend of future network development. However, many bottlenecks exist in the converged system such as high time delay, high energy consumption, and low data rate. Multi-Radi...The heterogeneous network convergence is the trend of future network development. However, many bottlenecks exist in the converged system such as high time delay, high energy consumption, and low data rate. Multi-Radio Cooperation (MRC) technology is specially designed to overcome these bottlenecks and to satisfy the requirements of heterogeneous network convergence. MRC can improve network capacity, reduce the energy consumption of radio devices, and decrease handover latency between heterogeneous networks by the cooperation of multiple radios, and by efficient management and feasible allocation of multi-radio resources. MRC makes real seamless heterogeneous network convergence possible.展开更多
文摘Smart edge computing(SEC)is a novel paradigm for computing that could transfer cloud-based applications to the edge network,supporting computation-intensive services like face detection and natural language processing.A core feature of mobile edge computing,SEC improves user experience and device performance by offloading local activities to edge processors.In this framework,blockchain technology is utilized to ensure secure and trustworthy communication between edge devices and servers,protecting against potential security threats.Additionally,Deep Learning algorithms are employed to analyze resource availability and optimize computation offloading decisions dynamically.IoT applications that require significant resources can benefit from SEC,which has better coverage.Although access is constantly changing and network devices have heterogeneous resources,it is not easy to create consistent,dependable,and instantaneous communication between edge devices and their processors,specifically in 5G Heterogeneous Network(HN)situations.Thus,an Intelligent Management of Resources for Smart Edge Computing(IMRSEC)framework,which combines blockchain,edge computing,and Artificial Intelligence(AI)into 5G HNs,has been proposed in this paper.As a result,a unique dual schedule deep reinforcement learning(DS-DRL)technique has been developed,consisting of a rapid schedule learning process and a slow schedule learning process.The primary objective is to minimize overall unloading latency and system resource usage by optimizing computation offloading,resource allocation,and application caching.Simulation results demonstrate that the DS-DRL approach reduces task execution time by 32%,validating the method’s effectiveness within the IMRSEC framework.
基金supported by the National Natural Science Foundation of China(724701189072431011).
文摘Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm.
基金supported by the Science and Technology Project of State Grid Corporation of China under grant 52094021N010(5400-202199534A-0-5-ZN)。
文摘Low-carbon smart parks achieve selfbalanced carbon emission and absorption through the cooperative scheduling of direct current(DC)-based distributed photovoltaic,energy storage units,and loads.Direct current power line communication(DC-PLC)enables real-time data transmission on DC power lines.With traffic adaptation,DC-PLC can be integrated with other complementary media such as 5G to reduce transmission delay and improve reliability.However,traffic adaptation for DC-PLC and 5G integration still faces the challenges such as coupling between traffic admission control and traffic partition,dimensionality curse,and the ignorance of extreme event occurrence.To address these challenges,we propose a deep reinforcement learning(DRL)-based delay sensitive and reliable traffic adaptation algorithm(DSRTA)to minimize the total queuing delay under the constraints of traffic admission control,queuing delay,and extreme events occurrence probability.DSRTA jointly optimizes traffic admission control and traffic partition,and enables learning-based intelligent traffic adaptation.The long-term constraints are incorporated into both state and bound of drift-pluspenalty to achieve delay awareness and enforce reliability guarantee.Simulation results show that DSRTA has lower queuing delay and more reliable quality of service(QoS)guarantee than other state-of-the-art algorithms.
基金supported by the Liaoning Provincial Education Department Fund,grant number JYTZD2023083.
文摘In dynamic 5G network environments,user mobility and heterogeneous network topologies pose dual challenges to the effort of improving performance of mobile edge caching.Existing studies often overlook the dynamic nature of user locations and the potential of device-to-device(D2D)cooperative caching,limiting the reduction of transmission latency.To address this issue,this paper proposes a joint optimization scheme for edge caching that integrates user mobility prediction with deep reinforcement learning.First,a Transformer-based geolocation prediction model is designed,leveraging multi-head attention mechanisms to capture correlations in historical user trajectories for accurate future location prediction.Then,within a three-tier heterogeneous network,we formulate a latency minimization problem under a D2D cooperative caching architecture and develop a mobility-aware Deep Q-Network(DQN)caching strategy.This strategy takes predicted location information as state input and dynamically adjusts the content distribution across small base stations(SBSs)andmobile users(MUs)to reduce end-to-end delay inmulti-hop content retrieval.Simulation results show that the proposed DQN-based method outperforms other baseline strategies across variousmetrics,achieving a 17.2%reduction in transmission delay compared to DQNmethods withoutmobility integration,thus validating the effectiveness of the joint optimization of location prediction and caching decisions.
基金supported in part by National Key Research and Development Project under Grant 2020YFB1807204in part by the National Natural Science Foundation of China under Grant U2001213 and 61971191+2 种基金in part by the Beijing Natural Science Foundation under Grant L201011in part by the Key project of Natural Science Foundation of Jiangxi Province under Grant 20202ACBL202006in part by the Science and Technology Foundation of Jiangxi Province(20202BCD42010)。
文摘The dual frequency Heterogeneous Network(HetNet),including sub-6 GHz networks together with Millimeter Wave(mmWave),achieves the high data rates of user in the networks with hotspots.The cache-enabled HetNets with hotspots are investigated using an analytical framework in which Macro Base Stations(MBSs)and hotspot centers are treated as two independent homogeneous Poisson Point Processes(PPPs),and locations of Small Base Stations(SBSs)and users are modeled as two Poisson Cluster Processes(PCPs).Under the PCP-based modeling method and the Most Popular Caching(MPC)scheme,we propose a cache-enabled association strategy for HetNets with limited storage capacity.The performance of association probability and coverage probability is explicitly derived,and Monte Carlo simulation is utilized to verify that the results are correct.The outcomes of the simulation present the influence of antenna configuration and cache capacities of MBSs and SBSs on network performance.Numerical optimization of the standard deviation ratio of SBSs and users of association probability is enabled by our analysis.
文摘In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data rate.We consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)density.Such user centric deployment of mmWave SBSs inevitably incurs correlation between UE and SBSs.For a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave communication.By using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power association.For UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy efficiency.We also provide Monte Carlo simulation results to validate the accuracy of the derived expressions.Furthermore,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave HCNets.Our results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.
基金supported by the National High-Tech R&D Program (863 Program) under grant No. 2015AA01A705Beijing Municipal Science and Technology Commission research fund project under grant No. D151100000115002+1 种基金China Scholarship Council under grant No. 201406470038BUPT youth scientific research innovation program under grant No. 500401238
文摘Although small cell offloading technology can alleviate the congestion in macrocell, aggressively offloading data traffic from macrocell to small cell can also degrade the performance of small cell due to the heavy load. Because of collision and backoff, the degradation is significant especially in network with contention-based channel access, and finally decreases throughput of the whole network. To find an optimal fraction of traffic to be offloaded in heterogeneous network, we combine Markov chain with the Poisson point process model to analyze contention-based throughput in irregularly deployment networks. Then we derive the close-form solution of the throughput and find that it is a function of the transmit power and density of base stations.Based on this, we propose the load-aware offloading strategies via power control and base station density adjustment. The numerical results verify our analysis and show a great performance gain compared with non-load-aware offloading.
基金supported in part by the National Natural Science Foundation of China under grant No. 61271259, No. 61301123, No. 61471076Scientific and Technological Research Program of Chongqing Municipal Education Commission of Chongqing of China under Grant No.KJ130536
文摘In order to solve the problem the existing vertical handoff algorithms of vehicle heterogeneous wireless network do not consider the diversification of network's status, an optimized vertical handoff algorithm based on markov process is proposed and discussed in this paper. This algorithm takes into account that the status transformation of available network will affect the quality of service(Qo S) of vehicle terminal's communication service. Firstly, Markov process is used to predict the transformation of wireless network's status after the decision via transition probability. Then the weights of evaluating parameters will be determined by fuzzy logic method. Finally, by comparing the total incomes of each wireless network, including handoff decision incomes, handoff execution incomes and communication service incomes after handoff, the optimal network to handoff will be selected. Simulation results show that: the algorithm proposed, compared to the existing algorithm, is able to receive a higher level of load balancing and effectively improves the average blocking rate, packet loss rate and ping-pang effect.
基金supported by the National Natural Science Foundation General Program of China under Grant No.61171110the National Basic Research Program of China under Grant No.2013CB329003
文摘Traditional cellular network requires that a user equipment(UE) should associate to the same base station(BS) in both the downlink(DL) and the uplink(UL). Based on dual connectivity(DC) introduced in LTE-Advanced R12, DL/UL decouple access scheme has been proposed, which is especially suitable for heterogeneous networks(Het Nets). This paper is the pioneer to take the DL/UL decouple access scheme into consideration and develop a novel resource allocation algorithm in a two-tier Het Net to improve the total system throughput in the UL and ease the load imbalance between macro base stations(MBSs) and pico base stations(PBSs). A model is formulated as a nonlinear integer programming, and the proposed algorithm is a sub-optimal algorithm based on the graph theory. First, an undirected and weighted interference graph is obtained. Next, the users are grouped to let users with large mutual interferences to be assigned to different clusters. Then, the users in different clusters are allocated to different resource blocks(RBs) by using the Hungarian algorithm. Simulation results show that the proposed algorithm can provide great promotions for both the total system throughput and the average cell edge user throughput and successfully ease the load imbalance between MBSs and PBSs.
基金the National Natural Science Foundation of People’s Republic of China(Grant Nos.U1703262 and 62163035)the Special Project for Local Science and Technology Development Guided by the Central Government(Grant No.ZYYD2022A05)Xinjiang Key Laboratory of Applied Mathematics(Grant No.XJDX1401)。
文摘On the multilingual online social networks of global information sharing,the wanton spread of rumors has an enormous negative impact on people's lives.Thus,it is essential to explore the rumor-spreading rules in multilingual environment and formulate corresponding control strategies to reduce the harm caused by rumor propagation.In this paper,considering the multilingual environment and intervention mechanism in the rumor-spreading process,an improved ignorants–spreaders-1–spreaders-2–removers(I2SR)rumor-spreading model with time delay and the nonlinear incidence is established in heterogeneous networks.Firstly,based on the mean-field equations corresponding to the model,the basic reproduction number is derived to ensure the existence of rumor-spreading equilibrium.Secondly,by applying Lyapunov stability theory and graph theory,the global stability of rumor-spreading equilibrium is analyzed in detail.In particular,aiming at the lowest control cost,the optimal control scheme is designed to optimize the intervention mechanism,and the optimal control conditions are derived using the Pontryagin's minimum principle.Finally,some illustrative examples are provided to verify the effectiveness of the theoretical results.The results show that optimizing the intervention mechanism can effectively reduce the densities of spreaders-1 and spreaders-2 within the expected time,which provides guiding insights for public opinion managers to control rumors.
基金supported in part by the National Natural Science Foundation of China under Grant no.61473066 and Grant no.61601109in part by the Fundamental Research Funds for the Central Universities under Grant No.N152305001.
文摘In this paper,a new communication model is built named grouping D2D(GD2D).Different from the traditional D2D coordination,we proposed GD2D communication in licensed and unlicensed spectrum simultaneously.We formulate a resource allocation problem,which aims at maximizing the energy efficiency(EE)of the system while guaranteeing the quality-of-service(Qos)of users.To efficiently solve this problem,the non-convex optimization problem is first transformed into a convex optimization problem.By transforming the fractional-form problem into an equivalent subtractive-form problem,an iterative power allocation algorithm is proposed to maximize the system EE.Moreover,the optimal closedform power allocation expressions are derived by the Lagrangian approach.Simulation results show that our algorithm achieves higher EE performance than the traditional D2D communication scheme.
基金Acknowledgements This work is supported by Key Program of National Natural Science Foundation of China Grant No. 60832009.
文摘In order to enhance the quality of vertical handoff in an overlay wireless network, multiple attributes are taken into account when optimizing the vertical handoff decision including user-based and network-based QoS factors. In this paper, we develop a novel vertical handoff algorithm in an integrated 3G cellular and Wireless LAN networks. The proposed algorithm can adjust the weight of each QoS attribute dynamically as the networks change, trace the network condition and choose the optimal access point at transient regions. Simulation results show that this algorithm is able to provide accurate handoff decision, resulting in small unnecessary handoff numbers, good performance of throughput and handoff delay in heterogeneous environments.
基金Project(2012AA01A301-01)supported by the National High-Tech Research and Development Plan of ChinaProjects(61301148,61272061)supported by the National Natural Science Foundation of China+3 种基金Projects(20120161120019,2013016111002)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProjects(14JJ7023,10JJ5069)supported by the Natural Science Foundation of Hunan Province,ChinaProject(ISN12-05)supported by State Key Laboratory of Integrated Services Networks Open Foundation,ChinaProject(531107040276)supported by the Fundamental Research Funds for the Central Universities,China
文摘Abstract: Two-tier heterogeneous networks (HetNets), where the current cellular networks, i.e., macrocells, are overlapped with a large number of randomly distributed femtocells, can potentially bring significant benefits to spectral utilization and system capacity. The interference management and access control for open and closed femtocells in two-tier HetNets were focused. The contributions consist of two parts. Firstly, in order to reduce the uplink interference caused by MUEs (macrocell user equipments) at closed femtocells, an incentive mechanism to implement interference mitigation was proposed. It encourages femtoeells that work with closed-subscriber-group (CSG) to allow the interfering MUEs access in but only via uplink, which can reduce the interference significantly and also benefit the marco-tier. The interference issue was then studied in open-subscriber-group (OSG) femtocells from the perspective of handover and mobility prediction. Inbound handover provides an alternative solution for open femtocells when interference turns up, while this accompanies with PCI (physical cell identity) confusion during inbound handover. To reduce the PCI confusion, a dynamic PCI allocation scheme was proposed, by which the high handin femtocells have the dedicated PCI while the others share the reuse PCIs. A Markov chain based mobility prediction algorithm was designed to decide whether the femtoeell status is with high handover requests. Numerical analysis reveals that the UL interference is managed well for the CSG femtocell and the PCI confusion issue is mitigated greatly in OSG femtocell compared to the conventional approaches.
基金supported by the National Natural Science Fund of China(Grant NO.61771065,Grant NO.61571054 and Grant NO.61631005)Beijing Nova Program(NO.Z151100000315077)
文摘In the upcoming 5 G heterogeneous networks, leveraging multiple radio access technologies(RATs) shows to be a crucial issue in achieving RAT multiplexing gain to meet the explosive traffic demand. For always best connection(ABC), users tend to activate parallel transmission across all available RATs. However from a system-wide perspective, this might not be optimal given the context of network load, interference and diverse service requirements. To intelligently determine how to use these multi-RAT access resources concurrently, this paper proposes a joint multi-RAT user association and resource allocation strategy with triple decision and integrated context awareness of users and networks. A dynamic game based ant colony algorithm(GACA) is designed to simultaneously maximize the system utility and the fairness of resource allocation. Simulation results show that it's more reasonable to make multi-RAT association decision from a system-wide viewpoint than from an individual one. Compared to max-SNR based and ABC based strategies, the proposed method alleviates network congestion and optimizes resource allocation. It obtains 39%~70% performance improvement.
基金supported by the National Natural Science Foundation of China (NSFC) under Grants 61427801 and 61671251the Natural Science Foundation Program through Jiangsu Province of China under Grant BK20150852+3 种基金the open research fund of National Mobile Communications Research Laboratory, Southeast University under Grant 2017D05China Postdoctoral Science Foundation under Grant 2016M590481Jiangsu Planned Projects for Postdoctoral Research Funds under Grant 1501018Asupported by NSFC under Grants 61531011 and 61625106
文摘The Internet of things(IoT) as an important application of future communication networks puts a high premium on delay issues. Thus when Io T applications meet heterogeneous networks(HetNets) where macro cells are overlaid with small cells, some traditional problems need rethinking. In this paper, we investigate the delay-addressed association problem in two-tier Het Nets considering different backhaul technologies. Specifically, millimeter wave and fiber links are used to provide high-capacity backhaul for small cells. We first formulate the user association problem to minimize the total delay which depends on the probability of successful transmission, the number of user terminals(UTs), and the number of base stations(BSs). And then two algorithms for active mode and mixed mode are proposed to minimize the network delay. Simulation results show that algorithms based on mutual selection between UTs and BSs have better performance than those based on distance. And algorithms for mixed modes have less delay than those for active mode when the number of BSs is large enough, compared to the number of UTs.
基金supported by the National Natural Science Foundation of China under Grant No.61371075the 863 project SS2015AA011306
文摘The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challenging and this is the focus of this paper. In this paper, the eavesdropper is hidden from the macro base stations. To relax the unpractical assumption on the channel state information on eavesdropper, a localization based algorithm is first given. Then a joint resource allocation algorithm is proposed in our work, which simultaneously considers physical layer security, cross-tier interference and joint optimization of power and subcarriers under fairness requirements. It is revealed in our work that the considered optimization problem can be efficiently solved relying on convex optimization theory and the Lagrangian dual decomposition method is exploited to solve the considered problem effectively. Moreover, in each iteration the closed-form optimal resource allocation solutions can be obtained based on the Karush-Kuhn-Tucker(KKT) conditions. Finally, the simulation results are given to show the performance advantages of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(60772066)
文摘To evaluate the trail potential of converged heterogeneous network (CHN) market, the logistic method for adoption modeling of CHN is used. User growth & penetration have been taken as two variants to find saturation condition in market. Model is continuous in time but modifications are done for discrete recurrence equation, commonly known as logistic map. Dynamic and static phases are taken into consideration while penetration decay is not covered in this model.
基金the Jiangsu Natural Science Foundation under Grant No.BK2007236Jiangsu Six-Categories Top Talent Fundunder Grand No.SJ207001
文摘Convergence and collaboration of heterogeneous networks in the next generation public mobile networks will be a subject of universal significance. Convergence of heterogeneous networks, as an effective approach to improve the coverage and capacity of public mobile network, to enable communication services, to provide Internet access and to enable mobile computing from everywhere, has drawn widespread attention for its good prospects in application. Construction of security system for wireless heterogeneous networks and development of new security models, key security techniques and approaches are critical and mandatory in heterogeneous networks development. Key technology of wireless heterogeneous networks security covers security routing protocol, access authentication, intrusion detection system, cooperative communication between nodes, etc.
基金This work was supported by National Natural Science Foundation of Chi⁃na under Grant Nos.61901051 and 61932005.
文摘The research of three-dimensional integrated communication technology plays a key role in achieving the ubiquitous connectivity,ultra-high data rates,and emergency communications in the sixth generation(6G)networks.Aerial networking provides a prom⁃ising solution to flexible,scalable,low-cost and reliable coverage for wireless devices.The integration of aerial network and terrestrial network has been an inevitable paradigm in the 6G era.However,energy-efficient communications and networking among aerial net⁃work and terrestrial network face great challenges.This paper is dedicated to discussing green communications of the air-ground integrated heterogeneous network(AGIHN).We first provide a brief introduction to the characteristics of AGIHN in 6G networks.Further,we analyze the challenges of green AGIHN from the aspects of green terrestrial networks and green aerial networks.Finally,several solutions to and key technologies of the green AGIHN are discussed.
基金the Natural Science Foundation of Jiangsu Province under Grant No.BK2007729
文摘The heterogeneous network convergence is the trend of future network development. However, many bottlenecks exist in the converged system such as high time delay, high energy consumption, and low data rate. Multi-Radio Cooperation (MRC) technology is specially designed to overcome these bottlenecks and to satisfy the requirements of heterogeneous network convergence. MRC can improve network capacity, reduce the energy consumption of radio devices, and decrease handover latency between heterogeneous networks by the cooperation of multiple radios, and by efficient management and feasible allocation of multi-radio resources. MRC makes real seamless heterogeneous network convergence possible.