期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Thermal Performance and Economic Efficiency Comparison of Typical Shallow and Medium-Deep Borehole Heat Exchanger Heating Systems in Xi’an,China
1
作者 Yuze Xue Li Kou +4 位作者 Guosheng Jia Liwen Jin Zhibin Zhang Jianke Hao Lip Huat Saw 《Energy Engineering》 2025年第3期1005-1024,共20页
Geothermal energy,a form of renewable energy,has been extensively utilized for building heating.However,there is a lack of detailed comparative studies on the use of shallow and medium-deep geothermal energy in buildi... Geothermal energy,a form of renewable energy,has been extensively utilized for building heating.However,there is a lack of detailed comparative studies on the use of shallow and medium-deep geothermal energy in building energy systems,which are essential for decision-making.Therefore,this paper presents a comparative study of the performance and economic analysis of shallow and medium-deep borehole heat exchanger heating systems.Based on the geological parameters of Xi’an,China and commonly used borehole heat exchanger structures,numerical simulationmethods are employed to analyze performance and economic efficiency.The results indicate that increasing the spacing between shallow borehole heat exchangers can effectively reduce thermal interference between the pipes and improve heat extraction performance.As the flow rate increases,the outlet water temperature ranges from 279.3 to 279.7 K,with heat extraction power varying between 595 and 609 W.For medium-deep borehole heat exchangers,performance predictions show that a higher flow rate results in greater heat extraction power.However,when the flow rate exceeds 30 m^(3)/h,further increases in flow rate have only a minor effect on enhancing heat extraction power.Additionally,the economic analysis reveals that the payback period for shallow geothermal heating systems ranges from 10 to 11 years,while for medium-deep geothermal heating systems,it varies more widely from 3 to 25 years.Therefore,the payback period for medium-deep geothermal heating systems is more significantly influenced by operational and installation parameters,and optimizing these parameters can considerably shorten the payback period.The results of this study are expected to provide valuable insights into the efficient and cost-effective utilization of geothermal energy for building heating. 展开更多
关键词 Geothermal heating shallow borehole heat exchanger medium-deep borehole heat exchanger heat extraction performance economic evaluation
在线阅读 下载PDF
Tailoring of a robust asymmetric aramid nanofibers/MXene aerogel film for enhanced infrared thermal camouflage and Joule heating performances
2
作者 Wanbin Dang Wei Guo +1 位作者 Wenting Chen Qiuyu Zhang 《Nano Research》 SCIE EI CSCD 2024年第3期1990-1998,共9页
The development of infrared(IR)surveillance technology has led to a growing interest in thermal camouflage.However,the trade-off relationship between low IR-emissivity and thermal insulation hinders the advance of the... The development of infrared(IR)surveillance technology has led to a growing interest in thermal camouflage.However,the trade-off relationship between low IR-emissivity and thermal insulation hinders the advance of thermal camouflage materials.Herein,guided by multi-physics simulation,we show a design of asymmetric aramid nanofibers/MXene(ANF/MXene)aerogel film that realizes high-efficient thermal camouflage applications.The rationale is that the asymmetric structure contains a thermal-insulation three-dimensional(3D)network part to prevent effective heat transfer and a low IR-emissivity(~0.3)dense surface layer to suppress radiative heat emission.It is remarkable that the synergy mechanism in the topology structure contributes to over 40%reduction of target radiation temperature.Impressively,the tailored asymmetric ANF/MXene aerogel film also enables sound mechanical properties such as a Young’s modulus of 44.4 MPa and a tensile strength of 1.3 MPa,superior to most aerogel materials.It also exhibits great Joule heating performances including low driving voltage(4 V),fast thermal response(<10 s),and long-term stability,further enabling its versatile thermal camouflage applications.This work offers an innovative design concept to configure multifunctional structures for next-generation thermal management applications. 展开更多
关键词 asymmetric aerogel film low infrared(IR)-emissivity thermal insulation IR thermal camouflage Joule heating performance
原文传递
A Novel Technology for Preparation of High Performance Fiber by Radio Frequency Heating CVD 被引量:1
3
《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第6期637-638,共2页
关键词 A Novel Technology for Preparation of High performance Fiber by Radio Frequency heating CVD RADIO
在线阅读 下载PDF
MoS_(2)Lubricate‑Toughened MXene/ANF Composites for Multifunctional Electromagnetic Interference Shielding
4
作者 Jiaen Wang Wei Ming +8 位作者 Longfu Chen Tianliang Song Moxi Yele Hao Zhang Long Yang Gegen Sarula Benliang Liang Luting Yan Guangsheng Wang 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期358-371,共14页
The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(ar... The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(aramid nanofibers)–MoS_(2)composite films with nacre-like layered structure here are fabricated after the introduction of MoS_(2)into binary MXene/ANF composite system.The introduction of MoS_(2)fulfills an impressive“kill three birds with one stone”improvement effect:lubrication toughening mechanical performance,reduction in secondary reflection pollution of electromagnetic wave,and improvement in the performance of photothermal conversion.After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 50:50),the strain to failure and tensile strength increase from 22.1±1.7%and 105.7±6.4 MPa and to 25.8±0.7%and 167.3±9.1 MPa,respectively.The toughness elevates from 13.0±4.1 to 26.3±0.8 MJ m^(−3)(~102.3%)simultaneously.And the reflection shielding effectiveness(SE_(R))of MXene/ANF(mass ratio of 50:50)decreases~10.8%.EMI shielding effectiveness(EMI SE)elevates to 41.0 dB(8.2–12.4 GHz);After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 60:40),the strain to failure increases from 18.3±1.9%to 28.1±0.7%(~53.5%),the SE_(R)decreases~22.2%,and the corresponding EMI SE is 43.9 dB.The MoS_(2)also leads to a more efficient photothermal conversion performance(~45 to~55℃).Additionally,MXene/ANF–MoS_(2)composite films exhibit excellent electric heating performance,quick temperature elevation(15 s),excellent cycle stability(2,2.5,and 3 V),and long-term stability(2520 s).Combining with excellent mechanical performance with high MXene content,electric heating performance,and photothermal conversion performance,EMI shielding ternary MXene/ANF–MoS_(2)composite films could be applied in many industrial areas.This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers. 展开更多
关键词 MXene-MoS_(2) Lubrication toughening EMI shielding Photothermal conversion Electric heating performance
在线阅读 下载PDF
Implementation of heat exchanger performance testing system of heat transfer and flow resistance 被引量:3
5
作者 操瑞兵 陈亚平 +2 位作者 吴嘉峰 董聪 盛艳军 《Journal of Southeast University(English Edition)》 EI CAS 2012年第1期46-51,共6页
A heat transfer performance testing system is presented with its hardware structure, operation principle, and software control and measurement system. Working fluids of the subsystem include thermal conducting oil, co... A heat transfer performance testing system is presented with its hardware structure, operation principle, and software control and measurement system. Working fluids of the subsystem include thermal conducting oil, compressed air, glycol water solution and water as the heating fluids, and air and water as the cooling fluids. The heat transfer performance testing of heat exchangers can be conducted not only for a conventional one heating fluid to one cooling fluid, but also for a compound air cooling heat exchanger with two or three heating fluids in parallel or in series. The control and measurement system is implemented based on a LabVIEW software platform, consisting of the data acquisition and process system, and the automotive operation and control system. By using advanced measuring instruments combined with sound computer software control, the testing system has characteristics of a compact structure, high accuracy, a wide range of testing scope and a friendly operation interface. The uncertainty of the total heat transfer coefficient K is less than 5%. The testing system provides a reliable performance testing platform for designing and developing new heat exchangers. 展开更多
关键词 heat exchanger heat transfer performance testing system LABVIEW
在线阅读 下载PDF
Design and Optimization of Converging-Diverging Liquid Cooling Channels for Enhanced ThermalManagement in Lithium-ion Battery Packs
6
作者 Tianjiao Zhang YiboXu +2 位作者 LongLi KequnLi Hua Zhang 《Frontiers in Heat and Mass Transfer》 2025年第3期819-832,共14页
Power batteries serve as key components of new energy vehicles and are distinguished by their large capacity,long lifespan,high energy density,and stable operation.The strict temperature demands of power battery packs... Power batteries serve as key components of new energy vehicles and are distinguished by their large capacity,long lifespan,high energy density,and stable operation.The strict temperature demands of power battery packs necessitate the development of highly efficient thermal management systems.In this study,a converging-diverging liquid cooling channel featuring a wave shaped structure was designed and analyzed for 18,650-type lithium-ion batteries.To investigate the design methodology for flow channel structure,a thermal model for the heat generation rate of the 18,650-type battery was developed.A comparative analysis of four geometrical configurations of convergingdiverging channels.It identified the flat-bottomed channel achieves a maximum reduction of 20.6%in peak internal temperature compared to the other designs.Subsequently,the effects of the arc depth,cell spacing,and Reynolds number on the heat dissipation of the flat-bottomed flow channel were comprehensively investigated.The results demonstrated that increasing the Reynolds number,maximizing the arc depth of the converging-diverging structure,and reducing cell spacing considerably improved the cooling heat dissipation efficiency.Based on the particle swarm optimization algorithm,the optimal parameter combination of the battery pack was obtained at a discharge rate of 2C,comprising an arc depth of 8.5 mm,cell spacing of 1 mm,and Reynolds number of 700.The study provides valuable guidance and references for the practical design and implementation of thermal management systems in new energy vehicles. 展开更多
关键词 Thermal management system converging-diverging flow channel heat dissipation performance BATTERY particle swarm optimization
在线阅读 下载PDF
Numerical simulation of heat release performance of filling body under condition of heat extracted by fluid flowing in buried tube 被引量:6
7
作者 ZHANG Xiao-yan LIU Li +2 位作者 LIU Lang LIU Lu JIA Yu-hang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2160-2174,共15页
It is the basic requirement of the synergetic exploitation of deep mineral resources and geothermal resources to arrange the heat transfer tube in filling body. The heat release performance of filling body directly im... It is the basic requirement of the synergetic exploitation of deep mineral resources and geothermal resources to arrange the heat transfer tube in filling body. The heat release performance of filling body directly impacts on the exploiting efficiency of geothermal energy. Based on heat transfer theory, a three-dimensional unsteady heat transfer model of filling body is established by using FLUENT simulation software. Taking the horizontal U-shaped buried pipe as research object, the variation of temperature field in filling body around buried pipe is analyzed during the heat release process of filling body;the initial temperature of filling body, the diameter of buried pipe, the inlet temperature and inlet velocity of heat transfer fluid influencing of coupling heat transfer, which exists between heat transfer fluid and surrounding filling body within a certain axial distance of buried tube, and influencing of temperature difference between inlet and outlet of heat transfer fluid and on heat transfer performance of filling body are also discussed. It not only lays a theoretical foundation for the synergetic exploitation of mineral resources and geothermal energy in deep mines, but also provides a reference basis for the arrangement of buried pipes in filling body as well as the selection of working conditions for heat transfer fluid. 展开更多
关键词 filling body buried pipe heat transfer fluid heat release performance
在线阅读 下载PDF
Effects of bending on heat transfer performance of axial micro-grooved heat pipe 被引量:5
8
作者 蒋乐伦 汤勇 潘敏强 《Journal of Central South University》 SCIE EI CAS 2011年第2期580-586,共7页
Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved... Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop,the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle,the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases,with the increase of the bending angles and the bending position closer to the vapor section. However,the effects of bending radius can be ignored. The result agrees well with the predicted equations. 展开更多
关键词 electronics cooling system axial micro-grooved heat pipe BENDING heat transfer performance
在线阅读 下载PDF
Evaluation of the heat transfer performance of helical coils of non-circular tubes 被引量:3
9
作者 Jundika C.KURNIA Agus P.SASMITO Arun S.MUJUMDAR 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第1期63-70,共8页
This study addresses heat transfer performance of various configurations of coiled non-circular tubes, e.g., in-plane spiral ducts, helical spiral ducts, and conical spiral ducts. The laminar flow of a Newtonian fluid... This study addresses heat transfer performance of various configurations of coiled non-circular tubes, e.g., in-plane spiral ducts, helical spiral ducts, and conical spiral ducts. The laminar flow of a Newtonian fluid in helical coils made of square cross section tubes is simulated using the computational fluid dynamic approach. The effects of tube Reynolds number, fluid Prandtl number, coil diameter, etc., are quantified and discussed. Both constant wall temperature and constant heat flux conditions are simulated. The effect of in-plane coil versus a cylindrical design of constant coil, as well as a conical coil design is discussed. Results are compared with those for a straight square tube of the same length as that used to form the coils. Advantages and limitations of using coiled tubes are discussed in light of the numerical results. 展开更多
关键词 COIL Non-circular tube Heat transfer performance Mathematical model
原文传递
Conceptual design and heat transfer performance of a flat-tile water-cooled divertor target 被引量:3
10
作者 Lei LI Le HAN +6 位作者 Pengfei ZI Lei CAO Tiejun XU Nanyu MOU Zhaoliang WANG Lei YIN Damao YAO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第9期194-205,共12页
The divertor target components for the Chinese fusion engineering test reactor(CFETR)and the future experimental advanced superconducting tokamak(EAST)need to remove a heat flux of up to20 MW m-2.In view of such a hig... The divertor target components for the Chinese fusion engineering test reactor(CFETR)and the future experimental advanced superconducting tokamak(EAST)need to remove a heat flux of up to20 MW m-2.In view of such a high heat flux removal requirement,this study proposes a conceptual design for a flat-tile divertor target based on explosive welding and brazing technology.Rectangular water-cooled channels with a special thermal transfer structure(TTS)are designed in the heat sink to improve the flat-tile divertor target’s heat transfer performance(HTP).The parametric design and optimization methods are applied to study the influence of the TTS variation parameters,including height(H),width(W*),thickness(T),and spacing(L),on the HTP.The research results show that the flat-tile divertor target’s HTP is sensitive to the TTS parameter changes,and the sensitivity is T>L>W*>H.The HTP first increases and then decreases with the increase of T,L,and W*and gradually increases with the increase of H.The optimal design parameters are as follows:H=5.5 mm,W*=25.8 mm,T=2.2 mm,and L=9.7 mm.The HTP of the optimized flat-tile divertor target at different flow speeds and tungsten tile thicknesses is studied using the numerical simulation method.A flat-tile divertor mock-up is developed according to the optimized parameters.In addition,high heat flux(HHF)tests are performed on an electron beam facility to further investigate the mock-up HTP.The numerical simulation calculation results show that the optimized flat-tile divertor target has great potential for handling the steady-state heat load of 20 MW m-2under the tungsten tile thickness<5 mm and the flow speed7 m s^(-1).The heat transfer efficiency of the flat-tile divertor target with rectangular cooling channels improves by13%and30%compared to that of the flat-tile divertor target with circular cooling channels and the ITER-like monoblock,respectively.The HHF tests indicate that the flat-tile divertor mock-up can successfully withstand 1000 cycles of20 MW m-2of heat load without visible deformation,damage,and HTP degradation.The surface temperature of the flat-tile divertor mock-up at the 1000th cycle is only930℃.The flat-tile divertor target’s HTP is greatly improved by the parametric design and optimization method,and is better than the ITER-like monoblock and the flat-tile mock-up for the WEST divertor.This conceptual design is currently being applied to the engineering design of the CFETR and EAST flat-tile divertors. 展开更多
关键词 CFETR heat transfer performance parametric design and optimization HHF tests flat-tile divertor target
在线阅读 下载PDF
Performance of underground heat storage system in a double-film-covered greenhouse 被引量:4
11
作者 WANG Yong-wei LIANG Xi-feng 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第4期279-282,共4页
An underground heat storage system in a double-film-covered greenhouse and an adjacent greenhouse without the heat storage system were designed on the basis of plant physiology to reduce the energy consumption in gree... An underground heat storage system in a double-film-covered greenhouse and an adjacent greenhouse without the heat storage system were designed on the basis of plant physiology to reduce the energy consumption in greenhouses. The results indicated that the floor temperature was respectively 5.2℃, 4.6℃ and 2.0 ℃ higher than that of the soil in the adjacent reference greenhouse after heat storage in a clear, cloudy and overcast sky in winter. Results showed that the temperature and humidity were feasible for plant growth in the heat saving greenhouse. 展开更多
关键词 GREENHOUSE Underground heat storage system performance of heat storage Energy saving
在线阅读 下载PDF
Heat transfer performance testing of a new type of phase change heat sink for high power light emitting diode 被引量:2
12
作者 XIANG Jian-hua ZHANG Chun-liang +2 位作者 ZHOU Chao LIU Gui-yun ZHOU Wei 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1708-1716,共9页
In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, t... In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, the fabrication process of miniaturized phase change heat sink is investigated, upon which all parts of the heat sink are fabricated including main-body and end-cover of the heat sink, the formation of three-dimensional boiling structures at the evaporation end, the sintering of the wick, and the encapsulation of high power LED phase change heat sink. Subsequently, with the assistance of the developed testing system, heat transfer performance of the heat sink is tested under the condition of natural convection, upon which the influence of thermal load and working medium on the heat transfer performance is investigated. Finally, the heat transfer performance of the developed miniaturized phase change heat sink is compared with that of metal solid heat sink. Results show that the developed miniaturized phase change heat sink presents much better heat transfer performance over traditional metal solid heat sink, and is suitable for the packaging of high power LED. 展开更多
关键词 miniaturized phase change heat sink three-dimensional microgrooves sintered wick heat transfer performance testing
在线阅读 下载PDF
Heat Transfer Performance and Structural Optimization of a Novel Micro-channel Heat Sink 被引量:1
13
作者 Jianhua Xiang Liangming Deng +3 位作者 Chao Zhou Hongliang Zhao Jiale Huang Sulian Tao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第2期189-200,共12页
With the advent of the 5G era,the design of electronic equipment is developing towards thinness,intelligence and multi-function,which requires higher cooling performance of the equipment.Micro-channel heat sink is pro... With the advent of the 5G era,the design of electronic equipment is developing towards thinness,intelligence and multi-function,which requires higher cooling performance of the equipment.Micro-channel heat sink is promising for the heat dissipation of super-thin electronic equipment.In this study,thermal resistance theoretical model of the micro-channel heat sink was first established.Then,fabrication process of the micro-channel heat sink was introduced.Subsequently,heat transfer performance of the fabricated micro-channel heat sink was tested through the developed testing platform.Results show that the developed micro-channel heat sink has more superior heat dissipation performance over conventional metal solid heat sink and it is well suited for high power LEDs application.Moreover,the micro-channel structures in the heat sink were optimized by orthogonal test.Based on the orthogonal optimization,heat dissipation performance of the micro-channel radiator was further improved. 展开更多
关键词 MICRO-CHANNEL Phase change heat sink Heat transfer performance testing Finite element simulation Orthogonal test
在线阅读 下载PDF
Monitoring actual performance of ground source heat pump system using GPRS-based data transmission: A case analysis in Tangshan 被引量:2
14
作者 杜红普 孔祥飞 +1 位作者 李敏 齐承英 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第4期1554-1562,共9页
The energy efficiency monitoring is an essential precondition for ground source heat pump system's controlling and energy saving operation. Based on the data monitoring applied in the school building, this work is... The energy efficiency monitoring is an essential precondition for ground source heat pump system's controlling and energy saving operation. Based on the data monitoring applied in the school building, this work is focused on the parameters acquisition and operation analysis of the GSHP system in Tangshan. Results show the average COPs(coefficient of performance) are2.85 and 2.70 in summer and winter, respectively, and heat(cold) unbalance underground existed after whole year operation. The analysis of data also indicates that the direct borehole air-conditioning saved some power consumption obviously in the early stage of summer and energy saving of the GSHP system depended remarkably on its operation and management level. Besides the observation points of ground temperature are laid for a large-scale GSHP system, and the hydraulic balance of the pipes group needs to be concerned specially in safeguarding better reliability. 展开更多
关键词 ground source heat pump monitoring operation performance
在线阅读 下载PDF
Multi-objective balanced method of optimizing the heat extraction performance for hot dry rock 被引量:1
15
作者 Guofeng Song Gensheng Li +1 位作者 Xianzhi Song Yu Shi 《Natural Gas Industry B》 2022年第6期497-510,共14页
Geothermal energy,a kind of clean and environmentally friendly energy source,is an important object of future natural resource development and utilization,among which,hot dry rock is one of the important deep geotherm... Geothermal energy,a kind of clean and environmentally friendly energy source,is an important object of future natural resource development and utilization,among which,hot dry rock is one of the important deep geothermal resources.In the current multi-objective optimization of heat extraction performance,reservoir production models are less considered and the effects of different optimization ideas are not compared comprehensively.To improve the heat extraction efficiency and prolong the exploitation life of geothermal reservoirs,this paper determines the appropriate operating parameters of geothermal system(injection temperature,injection rate,production pressure and injection-production well spacing)based on the coupled thermal-hydraulic-mechanical model of hot dry rock exploitation in the Gonghe area of Qinghai and three heat extraction optimization methods.In addition,the heat extraction performances of different schemes are comparatively evaluated.And the following research results are obtained.First,the sensitivity analysis of injection and production parameters shows that power generation and recovery factor are in a reverse relation with injection-production pressure difference,which is the direct reason for the adoption of multiobjective optimization.Second,the optimization scheme prepared on the basis of parametric study indicates that the shortest life of a geothermal reservoir is 10 years,the injection-production pressure difference is up to 67 MPa,there is a significant thermal breakthrough phenomenon and the reservoir safety faces challenges.Third,by virtue of multi-objective optimization and decision making integration,the optimal operation parameter combination of hot dry rock system is determined,the life of geothermal reservoirs can exceed 20 years and balanced optimization is achieved.In conclusion,the idea of multi-objective optimization is feasible and applicable to geothermal energy exploitation and this method provides a reference for the efficient geothermal energy development and utilization and is helpful to the realization of“double carbon”goal in China. 展开更多
关键词 GEOTHERMAL Hot dry rock Enhanced geothermal system Heat extraction performance Multi-objective optimization Single-objective optimization Injection and production parameter Balanced optimization
在线阅读 下载PDF
Theoretical and experimental research on heat transfer performance of the semi-open heat pipe
16
作者 Hua ZHU Bo ZHUAN +1 位作者 Jin-jun TAN Rong-hua HONG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期410-415,共6页
This paper focuses on the heat transfer performance of semi-open heat pipe which is a new type of heat pipe. After analyzing its condensation heat transfer mechanisms theoretically, several semi-open heat pipes in dif... This paper focuses on the heat transfer performance of semi-open heat pipe which is a new type of heat pipe. After analyzing its condensation heat transfer mechanisms theoretically, several semi-open heat pipes in different length ratios and upper hole diameters are studied experimentally and compared with the same dimensions closed heat pipes. Experimental results show that the heat transfer performance of semi-open heat pipe becomes better by increasing heat transfer rate. At the first transitional point, the heat transfer performance of semi-open heat pipe approaches the level of the closed heat pipe. It is suitable to choose upper small hole about 1 mm in diameter and length ratio larger than 0.6 for the semi-open heat pipe. 展开更多
关键词 Semi-open heat pipe Heat transfer performance Closed heat pipe First transitional point
在线阅读 下载PDF
Heat Dissipation Performance of Metal Core Printed Circuit Board with Micro Heat Exchanger
17
作者 Diancheng Qin Kewei Liang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第1期91-96,共6页
A Metal Core Printed Circuit Board with Micro Heat Exchanger(MHE MCPCB)was introduced for thermal management of high power LED.A comparative study was performed between 4 W/(m·K)regular MCPCB and this novel MCPCB... A Metal Core Printed Circuit Board with Micro Heat Exchanger(MHE MCPCB)was introduced for thermal management of high power LED.A comparative study was performed between 4 W/(m·K)regular MCPCB and this novel MCPCB to investigate the heat dissipation performance of this novel MCPCB.It was found that MHE MCPCB can obviously enhance the comprehensive optical properties of LED in comparison with 4 W/(m·K)regular MCPCB.Additionally,thermal contact resistance confining a dominant part of heat within the micro heat exchanger to achieve high efficient heat dissipation was proved. 展开更多
关键词 MHE MCPCB heat dissipation performance LED optical property
在线阅读 下载PDF
Effects of Heat Exchange Tube Structural Parameters on Performance of Vehicle Radiator
18
作者 Zeyan Liu Xilei Kong +3 位作者 Xiaobiao Han Hui Liu Quanzhen Wang Zhenling Wang 《Journal of Power and Energy Engineering》 2020年第9期1-7,共7页
In order to improve the performance of vehicle radiators, a two-dimensional heat transfer steady-state model of the radiator was set up. The influence of the structural parameters (axial ratio) of the heat exchange tu... In order to improve the performance of vehicle radiators, a two-dimensional heat transfer steady-state model of the radiator was set up. The influence of the structural parameters (axial ratio) of the heat exchange tube on the windward side on the heat transfer performance of the radiator was studied. With the increase of the axial ratio of the heat exchange tube on the windward side, the heat exchange capacity of the heat exchange tube surface slightly decreases. The heat exchange area increases significantly, which increases the total heat exchange of the radiator and improves the heat transfer performance of the radiator. When the axial ratio increases from 1.0 to 2.0, the average surface heat transfer capacity decreases from 5664.16</span><span style="font-family:""> </span><span style="font-family:Verdana;">W/m<sup>2</sup> to 5623.57</span><span style="font-family:""> </span><span style="font-family:Verdana;">W/m<sup>2</sup>. 展开更多
关键词 Vehicle Radiator Heat Transfer performance Heat Exchange Tube Structure Parameters Axial Ratio
在线阅读 下载PDF
Evaluation of the heat extraction performance of an abandoned well pattern in multilayer commingled production oil reservoirs
19
作者 Xianzhi Song Fuqiang Xu +1 位作者 Jiayan Ji Yu Shi 《Natural Gas Industry B》 2022年第6期578-587,共10页
Oilfield geothermal energy is one important part of geothermal resources,and it can be developed and used for power generation and heating.The geothermal reserves and production ofmulti-layer sandstone oil reservoirs ... Oilfield geothermal energy is one important part of geothermal resources,and it can be developed and used for power generation and heating.The geothermal reserves and production ofmulti-layer sandstone oil reservoirs account for 50%of the total geothermal reserves and production in China,respectively,but due to the influence of interlayer heterogeneity,interlayer interference is common in the process of geothermal development by water injection.Therefore,it is in an urgent need to evaluate the heat extraction performance of oil-bearing geothermal reservoirs in multi-layer commingled production.Taking a depleted oil reservoir(and even a high-or an extra-high water-saturation oil reservoir)as the research object,this paper establishes a numerical model of coupled oilewater two-phase heat flow in a multi-layer commingled production oil reservoir.Then,interlayer interference characteristics and temperature and pressure distribution situations under different porosity,permeability and initial oil saturation are compared.Finally,the influence of interlayer interference on heat extraction performance is analyzed.And the following research results are obtained.First,under the research conditions and model settings of this paper,the injectioneproduction pressure difference and production temperature difference between low-permeability layers and high-permeability layers of the reservoir with different permeability after 20 years'production are up to 3.27MPa and 24.5 K,respectively,which are much higher than the corresponding differences of oil-bearing homogeneous reservoirs.Second,the lower the initial oil saturation,the smaller the reservoir production temperature and injectioneproduction pressure difference.And after 20 years,the maximum difference is 1.32MPa.Third,interlayer interference is sensitive to permeability.The fluid in the high-permeability layers comes from the injection well of the same layer and low-permeability layers.The production temperature of the reservoirs with different permeability can rise by 5.33 K at most.In conclusion,permeability is the key parameter influencing production temperature and injectioneproduction pressure difference of oil-bearing reservoirs while porosity has less influence on production behaviors.In addition,injectioneproduction pressure difference is more sensitive to the change of initial oil saturation and the existence of oil phase can increase the injection pressure significantly.Furthermore,if there is a boundary geothermal source,the reservoirs with strong interlayer interference can obtain high heat extraction more easily,so this type of reservoirs can be given priority in the heat extraction of abandoned wells. 展开更多
关键词 Oilfield geothermal Abandoned well Heat extraction performance Oilewater two-phase Interlayer interference POROSITY PERMEABILITY Initial oil saturation
在线阅读 下载PDF
Large-scale physical simulation of injection and production of hot dry rock in Gonghe Basin,Qinghai Province,China 被引量:2
20
作者 ZHAO Peng ZHU Haiyan +4 位作者 LI Gensheng CHEN Zuo CHEN Shijie SHANGGUAN Shuantong QI Xiaofei 《Petroleum Exploration and Development》 SCIE 2024年第3期741-752,共12页
Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and... Based on the independently developed true triaxial multi-physical field large-scale physical simulation system of in-situ injection and production,we conducted physical simulation of long-term multi-well injection and production in the hot dry rocks of the Gonghe Basin,Qinghai Province,NW China.Through multi-well connectivity experiments,the spatial distribution characteristics of the natural fracture system in the rock samples and the connectivity between fracture and wellbore were clarified.The injection and production wells were selected to conduct the experiments,namely one injection well and two production wells,one injection well and one production well.The variation of several physical parameters in the production well was analyzed,such as flow rate,temperature,heat recovery rate and fluid recovery.The results show that under the combination of thermal shock and injection pressure,the fracture conductivity was enhanced,and the production temperature showed a downward trend.The larger the flow rate,the faster the decrease.When the local closed area of the fracture was gradually activated,new heat transfer areas were generated,resulting in a lower rate of increase or decrease in the mining temperature.The heat recovery rate was mainly controlled by the extraction flow rate and the temperature difference between injection and production fluid.As the conductivity of the leak-off channel increased,the fluid recovery of the production well rapidly decreased.The influence mechanisms of dominant channels and fluid leak-off on thermal recovery performance are different.The former limits the heat exchange area,while the latter affects the flow rate of the produced fluid.Both of them are important factors affecting the long-term and efficient development of hot dry rock. 展开更多
关键词 hot dry rock simulation of injection and production heat extraction performance CONDUCTIVITY dominant channel fluid leak-off
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部