期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Construction Technology and Quality Control of Heating Pipe Network Engineering
1
作者 LIU Jiang 《外文科技期刊数据库(文摘版)工程技术》 2021年第5期001-003,共5页
Since the reform and opening up, China's economic level has gradually improved, and people’s demand for a better life has become increasingly strong. With the rapid development of urbanization, large-scale popula... Since the reform and opening up, China's economic level has gradually improved, and people’s demand for a better life has become increasingly strong. With the rapid development of urbanization, large-scale population and construction facilities gather in the city. Heat energy is an essential energy in people’s life. Central heating engineering has become an essential infrastructure in urban construction. At the same time, heating engineering also implements the strategy of human sustainable development, which is important for improving people’s living standards, protecting the environment and improving the environment. The present situation of gas reservoir plays an important role. The construction of heat pipe network in the city is relatively strict. In order to avoid that the heat pipe network project will affect the interests of residents, public safety and the stability of the whole system due to quality problems, the relevant parties of the project should conduct real-time supervision and inspection according to relevant standards during the construction of facilities. The design documents should be implemented to ensure the scientificity, safety and stability of the project. And improve the efficiency of its system operation, to achieve the purpose of economic operation. This paper makes a detailed analysis and discussion on the importance of the safety construction of the heat pipe network project and the supervision in the construction process, so as to lay a theoretical foundation for the smooth progress of the project. 展开更多
关键词 heat pipe network engineering construction technology quality control
原文传递
Study on least square modeling of heat engineering object based on typical signal response 被引量:4
2
作者 齐维贵 陈烈 朱学莉 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2007年第1期1-4,共4页
This paper proposes a kind of least square modeling method based on typical signal response to enhance modeling accuracy of heat engineering process and adapts the environment that modeling experiment conditions are l... This paper proposes a kind of least square modeling method based on typical signal response to enhance modeling accuracy of heat engineering process and adapts the environment that modeling experiment conditions are limited. The principle of this method is, under the condition of known typical pulse, step and slope signal response and model structure, to give algorithm of model parameters of identified continuous system by least square mode through derivation. The method is applied to the identification of heat exchange process for a consumer substation, and identification result obtained is compared with that of other conventional methods. After the comparison the result shows that identification accuracy is improved obviously. In addition to the good identification accuracy, this method has the characteristics such as it can identify directly continuous system model, pure lagging time, and is not sensitive to data length in the identification process. All these characteristics show that this method is simple, easy to implement and has good practicability. 展开更多
关键词 pulse response least square method heat engineering object identification
在线阅读 下载PDF
Exploring heating performance of gas engine heat pump with heat recovery 被引量:3
3
作者 董付江 刘凤国 +2 位作者 李先庭 尤学一 赵冬芳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1931-1936,共6页
In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1... In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature. 展开更多
关键词 gas engine heat pump coefficient of performance primary energy ratio heating mode heat recovery
在线阅读 下载PDF
Hidden Dangers and Prevention Measures of the Construction Quality of Heating Pipe Network Project
4
作者 LIXiang 《外文科技期刊数据库(文摘版)工程技术》 2022年第9期129-132,共4页
The sustainable development of Chinas social economy, the heating pipe network project has also had a great development. At present, the society gives positive encouragement and advocacy to the sustainable development... The sustainable development of Chinas social economy, the heating pipe network project has also had a great development. At present, the society gives positive encouragement and advocacy to the sustainable development of the project, and takes energy conservation and emission reduction as a very important task at present. Environmental protection has also become the primary factor of project construction. Central heating has been gradually adopted by construction workers in the heat network, mainly because central heating can greatly reduce the cost of the project. But if there is a problem in a node in the heat network, it will lead to a large area of the heat network without heating phenomenon. Therefore, due to the complex pipe network, the quality danger of heating pipe network is easy to occur in the construction process. Strengthening the construction technology is an important basis to ensure the quality. 展开更多
关键词 heating pipe network engineering construction quality hidden dangers prevention and control measu
原文传递
Recent advance on the efficiency at maximum power of heat engines 被引量:9
5
作者 Tu Zhan-Chun 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期36-45,共10页
This review reports several key advances on the theoretical investigations of efficiency at maximum power of heat engines in the past five years. The analytical results of efficiency at maximum power for the Curzon-Ah... This review reports several key advances on the theoretical investigations of efficiency at maximum power of heat engines in the past five years. The analytical results of efficiency at maximum power for the Curzon-Ahlborn heat engine, the stochastic heat engine constructed from a Brownian particle, and Feynman's ratchet as a heat engine are presented. It is found that: the efficiency at maximum power exhibits universal behavior at small relative temperature differences; the lower and the upper bounds might exist under quite general conditions; and the problem of efficiency at maximum power comes down to seeking for the minimum irreversible entropy production in each finite-time isothermal process for a given time. 展开更多
关键词 effciency at maximum power heat engine UNIVERSALITY BOUNDS
原文传递
Output power analyses of an endoreversible Carnot heat engine with irreversible heat transfer processes based on generalized heat transfer law 被引量:7
6
作者 吴艳秋 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第7期183-188,共6页
In this paper, an endoreversible Carnot heat engine with irreversible heat transfer processes is analyzed based on generalized heat transfer law. The applicability of the entropy generation minimization, exergy analys... In this paper, an endoreversible Carnot heat engine with irreversible heat transfer processes is analyzed based on generalized heat transfer law. The applicability of the entropy generation minimization, exergy analyses method, and entransy theory to the analyses is discussed. Three numerical cases are presented. It is shown that the results obtained from the entransy theory are different from those from the entropy generation minimization, which is equivalent to the exergy analyses method. For the first case in which the application preconditions of the entropy generation minimization and entransy loss maximization are satisfied, both smaller entropy generation rate and larger entransy loss rate lead to larger output power. For the second and third cases in which the preconditions are not satisfied, the entropy generation minimization does not lead to the maximum output power, while larger entransy loss rate still leads to larger output power in the third case. For the discussed cases, the concept of entransy dissipation is not applicable for the analyses of output power.The problems in the negative comments on the entransy theory are pointed out and discussed. The related researchers are advised to focus on some new specific application cases to show if the entransy theory is the same as some other theories. 展开更多
关键词 entropy generation exergy destruction entransy endoreversible Carnot heat engine
原文传递
Optimization of combined endoreversible Carnot heat engines with different objectives 被引量:4
7
作者 程雪涛 梁新刚 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期239-244,共6页
Taking the output power, thermal efficiency, and thermo-economic performance as the optimization objectives, we optimize the operation parameters of a thermodynamic system with combined endoreversible Carnot heat engi... Taking the output power, thermal efficiency, and thermo-economic performance as the optimization objectives, we optimize the operation parameters of a thermodynamic system with combined endoreversible Carnot heat engines in this paper. The applicabilities of the entropy generation minimization and entransy theory to the optimizations are discussed. For the discussed cases, only the entransy loss coefficient is always agreeable to the optimization of thermal efficiency. The applicabilities of the other discussed concepts to the optimizations are conditional. Different concepts and principles are needed for different optimization objectives, and the optimization principles have their application preconditions. When the preconditions are not satisfied, the principles may be not applicable. 展开更多
关键词 combined endoreversible Carnot heat engines entransy theory entropy generation minimization finite time thermodynamics
原文传递
Bounds of Efficiency at Maximum Power for Normal-, Sub- and Super-Dissipative Carnot-Like Heat Engines 被引量:2
8
作者 王洋 涂展春 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第2期175-178,共4页
The Carnot-like heat engines are classified into three types (normal-, sub- and, super-dissipative) accord- ing to relations between the minimum irreversible entropy production in the "isothermal" processes and th... The Carnot-like heat engines are classified into three types (normal-, sub- and, super-dissipative) accord- ing to relations between the minimum irreversible entropy production in the "isothermal" processes and the time for completing those processes. The efficiencies at maximum power of normal-, sub- and super-dissipative Carnot-like heat engines are proved to be bounded between ηc/2 and ηc/ (2 - ηc ), ηc /2 and ηc, 0 and ηc/ (2 - ηc ), respectively. These bounds are also shared by linear, sub- and super-linear irreversible Carnot-like engines [Tu and Wang, Europhys. Left. 98 (2012) 40001] although the dissipative engines and the irreversible ones are inequivalent to each other. 展开更多
关键词 BOUND efficiency at maximum power heat engine
原文传递
Consistency of optimizing finite-time Carnot engines with the low-dissipation model in the two-level atomic heat engine 被引量:1
9
作者 Yu-Han Ma C P Sun Hui Dong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第12期78-85,共8页
The efficiency at the maximum power(EMP)for finite-time Carnot engines established with the low-dissipation model,relies significantly on the assumption of the inverse proportion scaling of the irreversible entropy ge... The efficiency at the maximum power(EMP)for finite-time Carnot engines established with the low-dissipation model,relies significantly on the assumption of the inverse proportion scaling of the irreversible entropy generationΔS^(ir)on the operation timeτ,i.e.ΔS^(ir)∝1/τ.The optimal operation time of the finite-time isothermal process for EMP has to be within the valid regime of the inverse proportion scaling.Yet,such consistency was not tested due to the unknown coefficient of the 1/τ-scaling.In this paper,we reveal that the optimization of the finite-time two-level atomic Carnot engines with the low-dissipation model is consistent only in the regime ofη_(C)<<2(1-δ)/(1+δ),whereη_(C)is the Carnot efficiency,andδis the compression ratio in energy level difference of the heat engine cycle.In the large-η_(C)regime,the operation time for EMP obtained with the low-dissipation model is not within the valid regime of the 1/τ-scaling,and the exact EMP of the engine is found to surpass the well-known boundη_(C)=η_(C)/(2-η_(C)). 展开更多
关键词 finite-time thermodynamics low-dissipation model quantum heat engine efficiency at maximum power irreversible entropy generation
原文传递
Thermodynamic Performance Characteristics of a Brownian Microscopic Heat Engine Driven by Discrete and Periodic Temperature Field 被引量:1
10
作者 张彦平 何济洲 +1 位作者 何弦 肖宇玲 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第11期857-862,共6页
A Brownian microscopic heat engine with a particle hopping on a one-dimensional lattice driven by adiscrete and periodic temperature field in a periodic sawtooth potential is investigated.In order to clarify the under... A Brownian microscopic heat engine with a particle hopping on a one-dimensional lattice driven by adiscrete and periodic temperature field in a periodic sawtooth potential is investigated.In order to clarify the underlyingphysical pictures of the heat engine, the heat flow via the potential energy and the kinetic energy of the particles areconsidered simultaneously.Based on describing the jumps among the three states, the expressions of the efficiency andpower output of the heat engine are derived analytically.The general performance characteristic curves are plotted bynumerical calculation.It is found that the power output-efficiency curve is a loop-shaped one, which is similar to onefor a real irreversible heat engine.The influence of the ratio of the temperature of the hot and cold reservoirs and thesawtooth potential on the maximum efficiency and power output is analyzed for some given parameters.When the heatflows via the kinetic energy is neglected, the power output-efficiency curve is an open-shaped one, which is similar to onefor an endroeversible heat engine. 展开更多
关键词 the master equation kinetic energy microscope Brownian heat engine thermodynamic performance
在线阅读 下载PDF
Charged torus-like black holes as heat engines 被引量:1
11
作者 Hanwen Feng Yuchen Huang +1 位作者 Wei Hong Jun Tao 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第4期104-110,共7页
We investigate the thermodynamical properties of charged torus-like black holes and take it as the working substance to study the heat engines.In the extended phase space,by interpreting the cosmological constant as t... We investigate the thermodynamical properties of charged torus-like black holes and take it as the working substance to study the heat engines.In the extended phase space,by interpreting the cosmological constant as the thermodynamic pressure,we derive the thermodynamical quantities by the first law of black hole thermodynamics and obtain the equation of state.Then,we calculate the efficiency of the heat engine in the Carnot cycle as well as the rectangular cycle,and investigate how the efficiency changes with respect to volume.In addition,to avoid a negative temperature,we emphasize that the charge of this black hole cannot be arbitrary.Last,we check the calculation accuracy of a benchmark scheme and discuss the upper bound and lower bound for charged torus-like black hole in the scheme. 展开更多
关键词 charged torus-like black holes heat engines benchmark scheme
原文传递
Thermal-structural analysis of regeneratively-cooled thrust chamber wall in reusable LOX/Methane rocket engines 被引量:7
12
作者 Jiawen SONG Bing SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1043-1053,共11页
To predict the thermal and structural responses of the thrust chamber wall under cyclic work,a 3-D fluid-structural coupling computational methodology is developed.The thermal and mechanical loads are determined by a ... To predict the thermal and structural responses of the thrust chamber wall under cyclic work,a 3-D fluid-structural coupling computational methodology is developed.The thermal and mechanical loads are determined by a validated 3-D finite volume fluid-thermal coupling computational method.With the specified loads,the nonlinear thermal-structural finite element analysis is applied to obtaining the 3-D thermal and structural responses.The Chaboche nonlinear kinematic hardening model calibrated by experimental data is adopted to predict the cyclic plastic behavior of the inner wall.The methodology is further applied to the thrust chamber of LOX/Methane rocket engines.The results show that both the maximum temperature at hot run phase and the maximum circumferential residual strain of the inner wall appear at the convergent part of the chamber.Structural analysis for multiple work cycles reveals that the failure of the inner wall may be controlled by the low-cycle fatigue when the Chaboche model parameter c3= 0,and the damage caused by the thermal-mechanical ratcheting of the inner wall cannot be ignored when c3〉 0.The results of sensitivity analysis indicate that mechanical loads have a strong influence on the strains in the inner wall. 展开更多
关键词 Rocket engine Thrust chamber Regenerative cooling Heat transfer Mechanical load Cyclic plasticity Ratcheting
原文传递
The Disk-Magnet Electromagnetic Induction Applied to Thermoelectric Energy Conversions 被引量:1
13
作者 Hiroshi Uechi Schun T. Uechi 《World Journal of Engineering and Technology》 2022年第2期179-193,共15页
The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) and improved DM-EMIs is shown, and possible applications to heat engines as one of the energy harvesting t... The thermoelectric energy conversion technique by employing the Disk-Magnet Electromagnetic Induction (DM-EMI) and improved DM-EMIs is shown, and possible applications to heat engines as one of the energy harvesting technologies are also discussed. The idea is induced by integrating irreversible thermodynamical mechanism of a water drinking bird with that of a Stirling engine, resulting in thermoelectric energy generation different from conventional heat engines. The current thermoelectric energy conversion with DM-EMI can be applied to wide ranges of temperature differences. The mechanism of DM-EMI energy converter is examined in terms of axial flux magnetic lines and categorized as the axial flux generator. It is useful for practical applications to macroscopic heat engines such as wind, geothermal, thermal and nuclear power turbines and heat-dissipation lines, for supporting thermoelectric energy conversions. The technique of DM-EMI will contribute to environmental problems to maintain clean and susceptible energy as one of the energy harvesting technologies. 展开更多
关键词 Thermoelectric Energy Generation (TEG) Thermomechanical Dynamics (TMD) Disk-Magnet Electromagnetic Induction (DM-EMI) Axial Flux Electric Generator (AFEG) Applications to Heat Engines
在线阅读 下载PDF
Two Scenarios on the Relativistic Quantum Heat Engine 被引量:1
14
作者 Agus Purwanto Heru Sukamto +1 位作者 Bintoro Anang Subagyo Muhammad Taufiqi 《Journal of Applied Mathematics and Physics》 2016年第7期1344-1353,共10页
We compare two different scenarios at relativistic quantum heat engine by considering three-level energy, and two non-interacting fermion in one-dimensional potential well. The difference between the scenarios is abou... We compare two different scenarios at relativistic quantum heat engine by considering three-level energy, and two non-interacting fermion in one-dimensional potential well. The difference between the scenarios is about mechanism to get into excited state by two fermions. We apply iso-energetic cycle that consists of two iso-energetic and two iso-entropic processes, and then compute and compare the efficiency at both scenarios. We also compare it with non-relativistic case. The result is that one scenario has larger efficiency than the other that does not happen at non-relativistic case. 展开更多
关键词 Quantum Heat Engine RELATIVISTIC SCENARIO
在线阅读 下载PDF
Quantum Stirling heat engine with squeezed thermal reservoir
15
作者 Nikolaos Papadatos 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期392-399,共8页
We analyze the performance of a quantum Stirling heat engine(QSHE), using a two-level system and a harmonic oscillator as the working medium, that is in contact with a squeezed thermal reservoir and a cold reservoir. ... We analyze the performance of a quantum Stirling heat engine(QSHE), using a two-level system and a harmonic oscillator as the working medium, that is in contact with a squeezed thermal reservoir and a cold reservoir. First, we derive closed-form expressions for the produced work and efficiency, which strongly depend on the squeezing parameter rh. Then, we prove that the effect of squeezing heats the working medium to a higher effective temperature, which leads to better overall performance. In particular, the efficiency increases with the degree of squeezing, surpassing the standard Carnot limit when the ratio of the temperatures of the hot and cold reservoirs is small. Furthermore, we derive the analytical expressions for the efficiency at maximum work and the maximum produced work in the high and low temperature regimes,and we find that at extreme temperatures the squeezing parameter rhdoes not affect the performance of the QSHE. Finally,the performance of the QSHE depends on the nature of the working medium. 展开更多
关键词 quantum heat engine open systems THERMODYNAMICS performance characteristics
原文传递
Optimization performance of quantum endoreversible Otto machines with dual-squeezed reservoirs
16
作者 Haoguang Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期198-204,共7页
We consider a quantum endoreversible Otto engine cycle and its inverse operation-Otto refrigeration cycle,employing two-level systems as the working substance and operating in dual-squeezed reservoirs.We demonstrate t... We consider a quantum endoreversible Otto engine cycle and its inverse operation-Otto refrigeration cycle,employing two-level systems as the working substance and operating in dual-squeezed reservoirs.We demonstrate that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum c criterion will degenerate toη-=η_(C)/(2-η_(C))andε-=(√9+8ε_(C)-3)/2 when symmetric squeezing is satisfied,respectively.We also investigated the influences of squeezing degree on the performance optimization of quantum Otto heat engines at the maximum work output and refrigerators at the maximum X criterion.These analytical results show that the efficiency of heat engines at maximum work output and the coefficient of performance for refrigerators at the maximum X criterion can be improved,reduced or even inhibited in asymmetric squeezing.Furthermore,we also find that the efficiency of quantum Otto heat engines at maximum work output is lower than that obtained from the Otto heat engines based on a single harmonic oscillator system.However,the coefficient of performance of the corresponding refrigerator is higher. 展开更多
关键词 quantum Otto heat engine quantum Otto refrigerator optimization performance dual-squeezed reservoirs
原文传递
Entangled quantum heat engine based on two-qubit Heisenberg XY model
17
作者 何济洲 何弦 郑洁 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期47-52,共6页
Based on a two-qubit isotropic Heisenberg XY model under a constant external magnetic field,we construct a four-level entangled quantum heat engine(QHE).The expressions for the heat transferred,the work,and the effi... Based on a two-qubit isotropic Heisenberg XY model under a constant external magnetic field,we construct a four-level entangled quantum heat engine(QHE).The expressions for the heat transferred,the work,and the efficiency are derived.Moreover,the influence of the entanglement on the thermodynamic quantities is investigated analytically and numerically.Several interesting features of the variations of the heat transferred,the work,and the efficiency with the concurrences of the thermal entanglement of two different thermal equilibrium states in zero and nonzero magnetic fields are obtained. 展开更多
关键词 isotropic Heisenberg XY model thermal entanglement quantum heat engine perfor-mance characteristics
原文传递
Heat engines of the Kerr-AdS black hole
18
作者 Yi Zhong Yun-Zhi Du 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第12期129-137,共9页
In this paper,we investigate three types of heat engines for the rotating Kerr-Anti de Sitter(Kerr-AdS)black hole.We first briefly review the thermodynamics and phase structure of the Kerr-AdS black hole and obtain th... In this paper,we investigate three types of heat engines for the rotating Kerr-Anti de Sitter(Kerr-AdS)black hole.We first briefly review the thermodynamics and phase structure of the Kerr-AdS black hole and obtain the phase structure in the T-S chart.The thermal stability of Kerr-AdS black holes,along with their dependence on various parameters,is thoroughly examined.Then,by utilizing the phase diagram,we consider three types of heat engines:the maximal Carnot engine,Stirling engine,and Rankine engine.We calculate both the work and efficiency for these engines.The results indicate that angular momentum has a significant influence on these heat engines. 展开更多
关键词 black hole heat engine Kerr-AdS
原文传递
Quantum Heat Engine and Negative Boltzmann Temperature
19
作者 Jing-Yi Xi Hai-Tao Quan 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第9期347-356,共10页
To clarify the ambiguity on negative Boltzmann temperature in literature, we study the Carnot and the Otto cycle with one of the heat reservoirs at the negative Boltzmann temperature based on a canonical ensemble desc... To clarify the ambiguity on negative Boltzmann temperature in literature, we study the Carnot and the Otto cycle with one of the heat reservoirs at the negative Boltzmann temperature based on a canonical ensemble description. The work extraction, entropy production and the efficiency of these cycles are explored. Conditions for constructing and properties of these thermodynamic cycles are elucidated. We find that the apparent "violation" of the second law of thermodynamics in these cycles are due to the fact that the traditional definition of thermodynamic efficiency is inappropriate in this situation. When properly understanding the efficiency and the adiabatic processes, in which the system crosses over "absolute ZERO" in a limit sense, the Carnot cycle with one of the heat reservoirs at a negative Boltzmann temperature can be understood straightforwardly, and it contradicts neither the second nor the third law of thermodynamics. Hence, negative Boltzmann temperature is a consistent concept in thermodynamics. We use a two-level system and an Ising spin system to illustrate our central results. 展开更多
关键词 quantum heat engines negative Boltzman temperature thermodynamics laws
原文传递
The Second Law of Thermodynamics in a Quantum Heat Engine Model
20
作者 ZHANG Ting CAI Li-Feng +1 位作者 CHEN Ping-Xing LI Cheng-Zu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第3期417-420,共4页
The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum... The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum heat engine (QHE) and prove the broad validity of the second law of thermodynamics. It is shown that the entropy of the quantum heat engine neither decreases in a whole cycle, nor decreases in either stage of the cycle. The second law of thermodynamics still holds in this QHE model. Moreover, although the modified quantum heat engine is capable of extracting more work, its efficiency does not improve at all. It is neither beyond the efficiency of T.D. Kieu's initial model,nor greater than the reversible Carnot efficiency. 展开更多
关键词 second law of thermodynamics ENTROPY quantum heat engine
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部