High-pressure and high-temperature(HPHT)experiments in large-volume presses(LVPs)benefit from reliable,available,and affordable heaters to achieve stable and homogeneous heating and,in some circumstances,X-ray transpa...High-pressure and high-temperature(HPHT)experiments in large-volume presses(LVPs)benefit from reliable,available,and affordable heaters to achieve stable and homogeneous heating and,in some circumstances,X-ray transparency for monitoring of properties of an in situ experiment using X-ray diffraction and contrast imaging techniques.We have developed heaters meeting the above requirements,and we screen the ternary system TiB2–SiC–hexagonal(h)BN(denoted as TSB)to enable manufacture of X-ray transparent heaters for HPHT runs.Heaters fabricated using optimized TSB-631(60%TiB2–30%SiC–10%hBN by weight)have been tested in modified truncated assemblies,showing excellent performance up to 22 GPa and 2395 K in HPHT runs.TSB-631 has good ceramic machinability,outstanding reproducibility,high stability,and negligible temperature gradient for runs at 3–7 GPa with cell assemblies with truncated edge lengths of 8–12 mm.The fabricated heaters not only show excellent performance in HPHT runs,but also demonstrate high X-ray transparency over a wide X-ray wavelength region,indicating potential applications for in situ X-ray diffraction/imaging under HPHT conditions in LVPs and other high-pressure apparatus.展开更多
Multifunctional flexible sensors as wearable electronic systems have attracted considerable attention for mimicking human skin to sense ambient stimuli.However,sensors need to have high resolution,stability and sensit...Multifunctional flexible sensors as wearable electronic systems have attracted considerable attention for mimicking human skin to sense ambient stimuli.However,sensors need to have high resolution,stability and sensitivity to realize fully biomimetic skin.Here,an assembled and welded Ag/W composite nanowire flexible electrode was prepared for body motion monitoring and flexible heaters.This Ag/W composite nanowire flexible electrode has a high transmittance of 90.1%(at 121Ω·sq^(−1) sheet resistance)and a low sheet resistance of 27Ω·sq^(−1)(at 60.1%transmittance).Although the transparency of this electrode is not high,the fluctuation in relative resistance change rate at 10%strain is only 5%after 1000 tensile cycles.It can be employed to monitor human body motions,including bending of fingers,arms,wrists,and throat action.Meanwhile,the Ag/W nanowires composite film heater achieves a steady-state temperature of up to 100℃ at a constant voltage of 3.5 V and an instantaneous heating rate of up to 36.5℃·s^(−1).展开更多
In order to study the thermoelectric efficiency of microwave heating and reproduction of asphalt pavements and the uniformity of reproduction temperature distribution, a waveguide excitation cavity is designed and app...In order to study the thermoelectric efficiency of microwave heating and reproduction of asphalt pavements and the uniformity of reproduction temperature distribution, a waveguide excitation cavity is designed and applied to the structural design of a microwave heater. The structural sizes of the incentive cavities are determined based on the waveguide transmission line theory. Using IE3D software, electromagnetic simulations are respectively carried out in four different situations, including the distances between the magnetron probes (antennas) and a short-circuit board, different horn electric lengths and aperture sizes, different dielectric properties of the asphalt mixture, and the distances between the asphalt surface and the mouth cavity. The results show that, when the distance between the magnetron probe and the short-circuit board is 32.5 ram, it is the best installation site; reduction of aerial length is the main factor in improving the heating uniformity. When the aggregate is limestone, the best heating effect can be produced. Maximum radiation efficiency can be realized by adjusting the space between the heater radiation port and the asphalt pavement. The experimental results of asphalt mixture heating in four different situations have a substantial agreement with the simulation results, which confirms that the developed microwave heater can achieve better impedance matching, thus improving the quality and efficiency of heating regeneration.展开更多
Solar water heaters(SWH) are widely used in urban areas because of their advantages in reducing energy consumption and mitigating greenhouse gas emissions. However, the performance of SWH subjected to obstructions is ...Solar water heaters(SWH) are widely used in urban areas because of their advantages in reducing energy consumption and mitigating greenhouse gas emissions. However, the performance of SWH subjected to obstructions is unclear yet. In this study, we present a numerical evaluation on thermal performance of fa?ade-installed SWH under three typical obstructed scenarios, based on various levels of sunshine duration. This study is carried out for four locations with various latitudes across China. Thermal performance is measured by solar fraction for annual and monthly evaluation. The results show that the obstruction can seriously degrade annual solar fraction of SWH, even in the 4-hour sunshine duration scenario, for all the studied locations. Interestingly, only lengthening sunshine duration in the standard day(e.g., from 2 h to 4 h) may not result in increasing annual solar fraction markedly. In terms of the monthly performance, solar fraction in January and December decreases significantly, while from May to August it just declines slightly, except for Guangzhou having a swift reduction. This study can provide insights into the behavior and promote the appropriate application of SWH in urban areas.展开更多
We present a micro-Pirani vacuum gauge using the low-resistivity monocrystal silicon as the heaters and heat sinks fabricated by the post complementary metal oxide semiconductor (CMOS) microelectromechanical system ...We present a micro-Pirani vacuum gauge using the low-resistivity monocrystal silicon as the heaters and heat sinks fabricated by the post complementary metal oxide semiconductor (CMOS) microelectromechanical system (MEMS) process. The metal interconnection of the device is fabricated by a 0.5 μm standard CMOS process on 8-inch silicon wafer. Then, a SiO2-Si low-temperature fusion bonding is developed to bond the CMOS wafer and the MEMS wafer, with the electrical connection realized by the tungsten through silicon via process. Wafer- level A1Ge euteetic bonding is adopted to package the Pirani gauge in a non-hermetic cavity to protect the gauge from being damaged or contaminated in the dicing and assembling process, and to make it suitable for actual applications. To increase the accuracy of the test and restrain negative influence of temperature drift, the Wheatstone bridge structure is introduced. The test results show that before capping, the gauge has an average sensitivity of 1.04 × 104 K.W-1Torr-1 in dynamic range of 0.01 20 Torr. After capping, the sensitivity of the gauge does not decrease but increases to 1.12 × 104 K.W-1 Torr-1.展开更多
An adjustable ejector expansion device for a CO2 heat pump water heater (HPWP) is proposed to improve the system performance. It has been designed to investigate experimentally the effects of the motive nozzle throat ...An adjustable ejector expansion device for a CO2 heat pump water heater (HPWP) is proposed to improve the system performance. It has been designed to investigate experimentally the effects of the motive nozzle throat area of the ejector, entrained flow pressure, back pressure and primary flow pressure on the entrainment ratio. Experiments based on different motive nozzle throat areas were conducted and the results of the prototype ejector using CO2 as working fluid are presented. The results show that an adjustable ejector can achieve high performance and work well in a wide range of working conditions.展开更多
Here,we report a facile method to produce pure silver nanowires(Ag NWs)with high yield.A highly conductive dispersant was used to ensure uniform dispersion of the Ag NWs.Without any posttreatment,the Ag NW networks,de...Here,we report a facile method to produce pure silver nanowires(Ag NWs)with high yield.A highly conductive dispersant was used to ensure uniform dispersion of the Ag NWs.Without any posttreatment,the Ag NW networks,deposited on flexible substrates,showed excellent optoelectrical performance owing to minimal junction resistance between the Ag NWs.To explore their potential in flexible optoelectronic devices,a transparent film heater was constructed based on the present Ag NW networks.The heater could achieve rapid response at low input voltage and reach a relatively high temperature in a short response time.Since this high-quality Ag NW film exhibits relatively low production costs and fast production time,it may have value for future electronic industry applications.展开更多
A thermoeconomic optimization analysis is presented yielding simple algebraic formulae for estimating the optimum number of feed water heater and optimal area distribution among the feed water heaters for thermal powe...A thermoeconomic optimization analysis is presented yielding simple algebraic formulae for estimating the optimum number of feed water heater and optimal area distribution among the feed water heaters for thermal power plants. The P1-P2 method is used in the present study, together with the thermoeconomic analyses of feed water heaters.展开更多
This paper studies the modelling and simulation for all forms of hcaters.The assumption of former days that the temperature of condensation is the saturationtemperature corresponding to heater pressure in steam side i...This paper studies the modelling and simulation for all forms of hcaters.The assumption of former days that the temperature of condensation is the saturationtemperature corresponding to heater pressure in steam side is no longer used.On the basisof the laws of conservation of mass,energy and momentum,the mathematical model ofheaters is established and the simulation calculation of a 125MW unit is made.The rcsultshows that the model is applicable for various kinds of steam-water heater in power plant.展开更多
Uniform heating of complex surfaces,especially non-developable surfaces,is a crucial problem that traditional rigid heaters cannot solve.Inspired by flexible electronic devices,a novel design for the stretchable heati...Uniform heating of complex surfaces,especially non-developable surfaces,is a crucial problem that traditional rigid heaters cannot solve.Inspired by flexible electronic devices,a novel design for the stretchable heating film is proposed with the flexible serpentine wire embedded in the soft polymer film,which can be attached to non-developable surfaces conformally.It provides a new way for the stretchable heaters to realize uniform heating of complex surfaces.However,the thermal field of flexible serpentine heaters(FSHs)depends on the configurations of the embedded serpentine heating wire,which requires accurate theoretical prediction of real-time temperature distribution.Therefore,the analytical model for the transient heat conduction in FSHs is solved by the separation of variables method and validated by the finite element analysis(FEA)in this paper.Based on this model,the effects of the geometric parameters,such as the radius and the length of the serpentine heaters,on the thermal uniformity are systematically investigated.This study can help to design and fabricate flexible heaters with uniform heating in the future.展开更多
Biodiesel(BD)was made from animal-fats reacting with methanol and potassium hydroxide in the laboratory.The biodiesel made in the laboratory was sent to K-petro,the government agency to inspect the quality of animal-f...Biodiesel(BD)was made from animal-fats reacting with methanol and potassium hydroxide in the laboratory.The biodiesel made in the laboratory was sent to K-petro,the government agency to inspect the quality of animal-fats biodiesel,of which generally the quality was acceptable for heating oil for agricultural hot air heater.Kinematic viscosity and calorific values of the biodiesels were measured.BD20(K),kerosene based biodiesel,showed 18 cSt at-20~C.It seems that BD100 can not be suitable for heating fuel under some temperature.As BD content increased calorific value decreased up to 40,000 J/g for 100%BD(BD100)while,light oil calorific value was 45,567 J/g,showing difference of 5,567 J/g(about 12%difference),Several different fuels including BD20(biodiesel 20%+light oil 80%),BD50(biodiesel 50%+light oil 50%),BD100(biodiesel 100%)and light oil were prepared and tested for fuel combustion qualities for agricultural hot air heater and their combustion performances were compared and analyzed.Flame dimensions of biodiesels and light oil were almost same shape at the same combustion condition in the burner of the hot air heater.Generally,CO2 amounts of BDs were greater than light oil,but the differences were so small that it is hard to tell there was significant difference between the BDs combustion and light oil.展开更多
In order to meet the demands of service life and the synthetical performance/price ratio of stainless steel in the solar water heater industry, the low molybdenum ultra-pure ferritic stainless steel (FSS) B445J1M wa...In order to meet the demands of service life and the synthetical performance/price ratio of stainless steel in the solar water heater industry, the low molybdenum ultra-pure ferritic stainless steel (FSS) B445J1M was developed at Baosteel. In this study, comparative studies were carried out on the mechanical properties, the formability and the corrosion resistance of B445J1M ,304 and 444 ,and the advantages and application fields of B445J1M were summarized.展开更多
This study carried out full-scale gas water heater combustion experiments and adopted FDS (fire dynamics simulator) to simulate three scenarios--different balcony environments when using water heater, such as airtig...This study carried out full-scale gas water heater combustion experiments and adopted FDS (fire dynamics simulator) to simulate three scenarios--different balcony environments when using water heater, such as airtight balcony, indoor door with openings and force ventilation to compare with full-scale combustion experiments. According to FDS simulation results, 02, CO and CO2 simulation concentration value correspond with full-scale experimental results. When the indoor O2 concentration was lower than 15%, which causes incomplete combustion, the CO concentration would rise rapidly and even reached above 1,500 ppm, causing death in short time. In addition, when the force ventilation model supplied the water heater with enough air to bum, the indoor CO concentration will keep low and harmless to humans. The study also adopted diverse variables, such as the opening area of window, outdoor wind speed and water heater types, to analyze deeply user's safety regarding gas water heater. In a result, while balcony area is larger than 14 mE, the volume of water heater is below 16 L (33.1 kW), and the indoor window, connecting balcony with room, is closed, if the opening on the outdoor window of the balcony is larger than 0.2 mE, this can ensure the personal security of the indoor space.展开更多
An energetic analysis of two power plants with six and seven heaters was realized in this work and also a feedwater heater was taking into consideration. This analysis considered the temperature and pressure ranges un...An energetic analysis of two power plants with six and seven heaters was realized in this work and also a feedwater heater was taking into consideration. This analysis considered the temperature and pressure ranges under which power generating plants work. The unit thermal consumption (UTC), the specific fuel consumption (SFC) and the specific steam consumption (SSC) were obtained for power generation. The energetic analysis to the cycles of steam with regeneration with six and seven heaters was realized. There was a difference of 0.5% in the values of UTC, SFC and SSC when the pressures of condensation changed. Also an analysis of the behavior of the thermal efficiency in relation to the rise of numbers of heater from two to seven is presented.展开更多
System performance of solar water heaters depends upon collector and storage tank designs, solar radiation intensity and ambient temperature, amongst others. Evacuated glass tube collectors with U-tubes inside are les...System performance of solar water heaters depends upon collector and storage tank designs, solar radiation intensity and ambient temperature, amongst others. Evacuated glass tube collectors with U-tubes inside are less prone to leakages than the all-glass or the heat pipe types. U-tube solar water heaters suspended on walls and balconies could help overcome present day roof space restriction and increasing apartment-style housing. As such, their performance would depend upon its orientation when mounted in a vertical position. This paper reports the results of outdoor tests conducted on natural convection U-tube solar water heaters oriented towards different directions. Long and short term test procedures were employed to allow us to compare their performances as if they were tested simultaneously side-by-side.展开更多
The article is devoted to decision-making in the control and design of autonomous heat supply systems with tubular gas heaters.The results of mathematical modelling and optimization of tubular gas heaters(TGN)are know...The article is devoted to decision-making in the control and design of autonomous heat supply systems with tubular gas heaters.The results of mathematical modelling and optimization of tubular gas heaters(TGN)are known.Tubular gas heaters are an extension of the term“infrared tubular gas heaters”.The main elements are:a gas burner,a tubular heater inside which gas combustion products with air move,and a mechanical fan(supply or exhaust),which ensures the movement of the coolant inside the tubular part and its removal outside.There are a number of new technical solutions that expand the scope of tubular gas heaters,for example,tubular gas heaters on pellets.Mathematical models of tubular heaters on pellets and solutions to the problems of optimal design of tubular heaters of linear structure are known.Another possible structure of tubular gas heaters is heaters with recirculation of the heating gas-air medium.Optimisation of such pellet heaters has not been performed before,which determined the subject of this paper.The article is devoted to the presentation of the method of optimization of the design solution for tubular heaters taking into account recirculation under the existing constraints.The novelty of the optimization lies in the use of a quasi-two-dimensional mathematical model for the hydraulic circuit of the heater.An evolutionary search algorithm with binary choice functions is used for numerical search of solutions,for which convergence with probability 1 to the optimal solution is shown.The algorithm contains two consecutive functions:the function of so-lution generation and the function of solution selection.The function of solution generation is built largely independently of the content of the problem to be solved,while the function of selection is built in such a way that the resulting binary selection relation is completely determined by the requirement of finding the necessary solution.The resulting binary selection relation includes both the selection components of the available constraints and the basic optimiztion requirement.展开更多
Wind power curtailment is of great importance with the increase of large-scale wind power connected to the grid. A new concept of redundant wind power accommodated by dispatching electric water heaters(EWHs) is develo...Wind power curtailment is of great importance with the increase of large-scale wind power connected to the grid. A new concept of redundant wind power accommodated by dispatching electric water heaters(EWHs) is developed in the paper. Precise predictions of wind power and EWHs load power are the basis for this work. A hybrid multi-kernel prediction approach integrating an adaptive fruit fly optimization algorithm(AFOA)and multi-kernel relevance vector machine(MKRVM) is proposed to deal with the sample distribution of multisource heterogeneous features uncovered by an energy entropy method, where AFOA is used to determine the kernel parameters in MKRVM adaptively and avoid the arbitrariness. For the large computation of the prediction approach, parallel computation based on the Hadoop cluster is used to accelerate the calculation. Then, an economic dispatching model for accommodating wind power is built taking into account the penalty of curtailed wind power and the operation cost of EWHs. The proposedscheme is implemented in an intelligent residential district.The results show that the optimization performance of the hybrid prediction approach is superior to those of four usual optimization algorithms in this case. Regular or orderly scheduling of EWHs enables accommodation of superfluous wind power and reduces dispatch cost.展开更多
The organic cocrystal strategy has provided a convenient and efficient platform for preparing organic photothermal materials.However,the rapidly directional preparation of cocrystals with desirable photothermal proper...The organic cocrystal strategy has provided a convenient and efficient platform for preparing organic photothermal materials.However,the rapidly directional preparation of cocrystals with desirable photothermal properties remains challenging due to a lack of suitable design ideas.Here,two new photothermal cocrystals,MTC and MFC,based on acceptor molecules(TCNQ and F4TCNQ)with different electron-withdrawing capacities were quickly prepared by the coprecipitation method,aiming to explore the effect of charge transfer(CT)interaction on photothermal properties.Compared with MTC,the stronger intermolecular CT interaction in MFC facilitates extending the absorption range(from the NIR-I to the NIR-II region)and enhancing the non-radiative transition process.Under the 808 nm laser irradiation,the photothermal conversion efficiency(PCE)of MFC is 54.6%,whereas MTC displays a mere 36.8%.The MFC cocrystal was further combined with a flexible polymer substrate(HPDMS)to prepare a flexible wearable heater(HPDMS@MFC),which exhibits excellent NIR-II photothermal performance.This work points out a research direction for the rapid assembly of efficient photothermal cocrystals and additionally provides an extensive application prospect for organic photothermal cocrystals in the field of wearable devices.展开更多
In spite of the recent successful demonstrations of flexible and transparent film heaters, most heaters with high optical transmittance and low applied direct current (DC) voltage are silver nanowire (Ag NW)-based...In spite of the recent successful demonstrations of flexible and transparent film heaters, most heaters with high optical transmittance and low applied direct current (DC) voltage are silver nanowire (Ag NW)-based or silver grid-based. In this study, flexible and stretchable copper nanowire (Cu NW)-based transparent film heaters were fabricated through a solution-based process, in which a thin layer of hydrophobic polymers was encapsulated on the Cu NW films. The thin polymer layer protected the films from oxidation under harsh testing conditions, i.e., high temperature, high humidity, and acidic and alkaline environments. The films exhibited remarkable performance, a wide operating temperature range (up to 150 ℃), and a high heating rate (14 ℃/s). Defrosting and wearable thermotherapy demonstrations of the Cu NW film heaters were carried out to investigate their practicality. The Cu NW-based film heaters have potential as reliable and low-cost film heaters.展开更多
In just one and half minutes,more than fifty thousand died due to the 7.7 and 7.6 magnitude earthquakes that struck Turkey’s southeast on February 6,2023;thousands of families who barely escaped struggled to survive ...In just one and half minutes,more than fifty thousand died due to the 7.7 and 7.6 magnitude earthquakes that struck Turkey’s southeast on February 6,2023;thousands of families who barely escaped struggled to survive in the freezing weather.A warm shelter was the most basic requirement of these families.Container buildings are a rapid and easy solution to this issue.However,there is a need for a more effective and safe heating option than a wood fire for these buildings.In this study,cabin heaters,which allow truck drivers to warm up when they park their vehicles to sleep,are specially optimized for emergency shelters after an earthquake.An optimized fuzzy controller was developed to use in such buildings,which allows an air–fuel ratio in the combustion chamber of the cabin heater to be controlled adaptively based on system dynamics to get lower carbon emissions and fuel consumption.The TRNSYS software was used to establish the transient simulation model of a cabin heater with a capacity of 4 kW for a typical 21 m^(2) shelter building in Turkey’s cold regions.The developed fuzzy controller carried out the heating process of this shelter from the 15th of November to the 15th of March.Instead of using expert knowledge,the Gray Wolf Optimization(GWO)method was applied to optimize the fuzzy controller parameters developed for the cabin heater.With the optimized fuzzy controller,the fuel consumption at the end of the heating season was reduced by an average of 0.2 L/h,and the cabin heater’s efficiency increased by more than 13%.Our simulation results show that the intelligent controller we developed could improve diesel fuel combustion efficiency by up to 85%.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.22090041 and 22401297)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022B1515120014).
文摘High-pressure and high-temperature(HPHT)experiments in large-volume presses(LVPs)benefit from reliable,available,and affordable heaters to achieve stable and homogeneous heating and,in some circumstances,X-ray transparency for monitoring of properties of an in situ experiment using X-ray diffraction and contrast imaging techniques.We have developed heaters meeting the above requirements,and we screen the ternary system TiB2–SiC–hexagonal(h)BN(denoted as TSB)to enable manufacture of X-ray transparent heaters for HPHT runs.Heaters fabricated using optimized TSB-631(60%TiB2–30%SiC–10%hBN by weight)have been tested in modified truncated assemblies,showing excellent performance up to 22 GPa and 2395 K in HPHT runs.TSB-631 has good ceramic machinability,outstanding reproducibility,high stability,and negligible temperature gradient for runs at 3–7 GPa with cell assemblies with truncated edge lengths of 8–12 mm.The fabricated heaters not only show excellent performance in HPHT runs,but also demonstrate high X-ray transparency over a wide X-ray wavelength region,indicating potential applications for in situ X-ray diffraction/imaging under HPHT conditions in LVPs and other high-pressure apparatus.
基金supported by the National Natural Science Foundation of China(Nos.51905103,52275177).
文摘Multifunctional flexible sensors as wearable electronic systems have attracted considerable attention for mimicking human skin to sense ambient stimuli.However,sensors need to have high resolution,stability and sensitivity to realize fully biomimetic skin.Here,an assembled and welded Ag/W composite nanowire flexible electrode was prepared for body motion monitoring and flexible heaters.This Ag/W composite nanowire flexible electrode has a high transmittance of 90.1%(at 121Ω·sq^(−1) sheet resistance)and a low sheet resistance of 27Ω·sq^(−1)(at 60.1%transmittance).Although the transparency of this electrode is not high,the fluctuation in relative resistance change rate at 10%strain is only 5%after 1000 tensile cycles.It can be employed to monitor human body motions,including bending of fingers,arms,wrists,and throat action.Meanwhile,the Ag/W nanowires composite film heater achieves a steady-state temperature of up to 100℃ at a constant voltage of 3.5 V and an instantaneous heating rate of up to 36.5℃·s^(−1).
基金The Sci-Tech Achievements Transformation Program of Colleges and Universities in Jiangsu Province(No.JH09-13)the Research Fund of Nanjing Institute of Technology(No.YKJ201005)
文摘In order to study the thermoelectric efficiency of microwave heating and reproduction of asphalt pavements and the uniformity of reproduction temperature distribution, a waveguide excitation cavity is designed and applied to the structural design of a microwave heater. The structural sizes of the incentive cavities are determined based on the waveguide transmission line theory. Using IE3D software, electromagnetic simulations are respectively carried out in four different situations, including the distances between the magnetron probes (antennas) and a short-circuit board, different horn electric lengths and aperture sizes, different dielectric properties of the asphalt mixture, and the distances between the asphalt surface and the mouth cavity. The results show that, when the distance between the magnetron probe and the short-circuit board is 32.5 ram, it is the best installation site; reduction of aerial length is the main factor in improving the heating uniformity. When the aggregate is limestone, the best heating effect can be produced. Maximum radiation efficiency can be realized by adjusting the space between the heater radiation port and the asphalt pavement. The experimental results of asphalt mixture heating in four different situations have a substantial agreement with the simulation results, which confirms that the developed microwave heater can achieve better impedance matching, thus improving the quality and efficiency of heating regeneration.
基金Projects(2017JJ3517,2017JJ3090)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2018NK2066)supported by the Key Research and Development Program of Hunan Province,ChinaProject(QJ2017007B)supported by the Youth Scientific Research Foundation of Central South University of Forestry and Technology,China。
文摘Solar water heaters(SWH) are widely used in urban areas because of their advantages in reducing energy consumption and mitigating greenhouse gas emissions. However, the performance of SWH subjected to obstructions is unclear yet. In this study, we present a numerical evaluation on thermal performance of fa?ade-installed SWH under three typical obstructed scenarios, based on various levels of sunshine duration. This study is carried out for four locations with various latitudes across China. Thermal performance is measured by solar fraction for annual and monthly evaluation. The results show that the obstruction can seriously degrade annual solar fraction of SWH, even in the 4-hour sunshine duration scenario, for all the studied locations. Interestingly, only lengthening sunshine duration in the standard day(e.g., from 2 h to 4 h) may not result in increasing annual solar fraction markedly. In terms of the monthly performance, solar fraction in January and December decreases significantly, while from May to August it just declines slightly, except for Guangzhou having a swift reduction. This study can provide insights into the behavior and promote the appropriate application of SWH in urban areas.
基金Supported by the National High Technology Research and Development Program of China under Grant No 2015AA042602
文摘We present a micro-Pirani vacuum gauge using the low-resistivity monocrystal silicon as the heaters and heat sinks fabricated by the post complementary metal oxide semiconductor (CMOS) microelectromechanical system (MEMS) process. The metal interconnection of the device is fabricated by a 0.5 μm standard CMOS process on 8-inch silicon wafer. Then, a SiO2-Si low-temperature fusion bonding is developed to bond the CMOS wafer and the MEMS wafer, with the electrical connection realized by the tungsten through silicon via process. Wafer- level A1Ge euteetic bonding is adopted to package the Pirani gauge in a non-hermetic cavity to protect the gauge from being damaged or contaminated in the dicing and assembling process, and to make it suitable for actual applications. To increase the accuracy of the test and restrain negative influence of temperature drift, the Wheatstone bridge structure is introduced. The test results show that before capping, the gauge has an average sensitivity of 1.04 × 104 K.W-1Torr-1 in dynamic range of 0.01 20 Torr. After capping, the sensitivity of the gauge does not decrease but increases to 1.12 × 104 K.W-1 Torr-1.
基金supported by the National Key Technologies R&D Program of China (No. 2006BAJ01A10)the Science and Technology Plan of Zhejiang Province (No. 2007C01002), China
文摘An adjustable ejector expansion device for a CO2 heat pump water heater (HPWP) is proposed to improve the system performance. It has been designed to investigate experimentally the effects of the motive nozzle throat area of the ejector, entrained flow pressure, back pressure and primary flow pressure on the entrainment ratio. Experiments based on different motive nozzle throat areas were conducted and the results of the prototype ejector using CO2 as working fluid are presented. The results show that an adjustable ejector can achieve high performance and work well in a wide range of working conditions.
基金financial support from the National Natural Science Foundation of China(grant No.51471180)Science and Technology Program of Shenyang(grant No.F16-205-1-18)。
文摘Here,we report a facile method to produce pure silver nanowires(Ag NWs)with high yield.A highly conductive dispersant was used to ensure uniform dispersion of the Ag NWs.Without any posttreatment,the Ag NW networks,deposited on flexible substrates,showed excellent optoelectrical performance owing to minimal junction resistance between the Ag NWs.To explore their potential in flexible optoelectronic devices,a transparent film heater was constructed based on the present Ag NW networks.The heater could achieve rapid response at low input voltage and reach a relatively high temperature in a short response time.Since this high-quality Ag NW film exhibits relatively low production costs and fast production time,it may have value for future electronic industry applications.
文摘A thermoeconomic optimization analysis is presented yielding simple algebraic formulae for estimating the optimum number of feed water heater and optimal area distribution among the feed water heaters for thermal power plants. The P1-P2 method is used in the present study, together with the thermoeconomic analyses of feed water heaters.
文摘This paper studies the modelling and simulation for all forms of hcaters.The assumption of former days that the temperature of condensation is the saturationtemperature corresponding to heater pressure in steam side is no longer used.On the basisof the laws of conservation of mass,energy and momentum,the mathematical model ofheaters is established and the simulation calculation of a 125MW unit is made.The rcsultshows that the model is applicable for various kinds of steam-water heater in power plant.
基金the National Natural Science Foundation of China(No.11772030)the Aeronautical Science Foundation of China(No.2018ZC51030)+1 种基金the Natural Science Foundation of Zhejiang Province of China(No.Y21A020002)the Opening Fund of State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian University of Technology(No.GZ19117)。
文摘Uniform heating of complex surfaces,especially non-developable surfaces,is a crucial problem that traditional rigid heaters cannot solve.Inspired by flexible electronic devices,a novel design for the stretchable heating film is proposed with the flexible serpentine wire embedded in the soft polymer film,which can be attached to non-developable surfaces conformally.It provides a new way for the stretchable heaters to realize uniform heating of complex surfaces.However,the thermal field of flexible serpentine heaters(FSHs)depends on the configurations of the embedded serpentine heating wire,which requires accurate theoretical prediction of real-time temperature distribution.Therefore,the analytical model for the transient heat conduction in FSHs is solved by the separation of variables method and validated by the finite element analysis(FEA)in this paper.Based on this model,the effects of the geometric parameters,such as the radius and the length of the serpentine heaters,on the thermal uniformity are systematically investigated.This study can help to design and fabricate flexible heaters with uniform heating in the future.
文摘Biodiesel(BD)was made from animal-fats reacting with methanol and potassium hydroxide in the laboratory.The biodiesel made in the laboratory was sent to K-petro,the government agency to inspect the quality of animal-fats biodiesel,of which generally the quality was acceptable for heating oil for agricultural hot air heater.Kinematic viscosity and calorific values of the biodiesels were measured.BD20(K),kerosene based biodiesel,showed 18 cSt at-20~C.It seems that BD100 can not be suitable for heating fuel under some temperature.As BD content increased calorific value decreased up to 40,000 J/g for 100%BD(BD100)while,light oil calorific value was 45,567 J/g,showing difference of 5,567 J/g(about 12%difference),Several different fuels including BD20(biodiesel 20%+light oil 80%),BD50(biodiesel 50%+light oil 50%),BD100(biodiesel 100%)and light oil were prepared and tested for fuel combustion qualities for agricultural hot air heater and their combustion performances were compared and analyzed.Flame dimensions of biodiesels and light oil were almost same shape at the same combustion condition in the burner of the hot air heater.Generally,CO2 amounts of BDs were greater than light oil,but the differences were so small that it is hard to tell there was significant difference between the BDs combustion and light oil.
文摘In order to meet the demands of service life and the synthetical performance/price ratio of stainless steel in the solar water heater industry, the low molybdenum ultra-pure ferritic stainless steel (FSS) B445J1M was developed at Baosteel. In this study, comparative studies were carried out on the mechanical properties, the formability and the corrosion resistance of B445J1M ,304 and 444 ,and the advantages and application fields of B445J1M were summarized.
文摘This study carried out full-scale gas water heater combustion experiments and adopted FDS (fire dynamics simulator) to simulate three scenarios--different balcony environments when using water heater, such as airtight balcony, indoor door with openings and force ventilation to compare with full-scale combustion experiments. According to FDS simulation results, 02, CO and CO2 simulation concentration value correspond with full-scale experimental results. When the indoor O2 concentration was lower than 15%, which causes incomplete combustion, the CO concentration would rise rapidly and even reached above 1,500 ppm, causing death in short time. In addition, when the force ventilation model supplied the water heater with enough air to bum, the indoor CO concentration will keep low and harmless to humans. The study also adopted diverse variables, such as the opening area of window, outdoor wind speed and water heater types, to analyze deeply user's safety regarding gas water heater. In a result, while balcony area is larger than 14 mE, the volume of water heater is below 16 L (33.1 kW), and the indoor window, connecting balcony with room, is closed, if the opening on the outdoor window of the balcony is larger than 0.2 mE, this can ensure the personal security of the indoor space.
文摘An energetic analysis of two power plants with six and seven heaters was realized in this work and also a feedwater heater was taking into consideration. This analysis considered the temperature and pressure ranges under which power generating plants work. The unit thermal consumption (UTC), the specific fuel consumption (SFC) and the specific steam consumption (SSC) were obtained for power generation. The energetic analysis to the cycles of steam with regeneration with six and seven heaters was realized. There was a difference of 0.5% in the values of UTC, SFC and SSC when the pressures of condensation changed. Also an analysis of the behavior of the thermal efficiency in relation to the rise of numbers of heater from two to seven is presented.
文摘System performance of solar water heaters depends upon collector and storage tank designs, solar radiation intensity and ambient temperature, amongst others. Evacuated glass tube collectors with U-tubes inside are less prone to leakages than the all-glass or the heat pipe types. U-tube solar water heaters suspended on walls and balconies could help overcome present day roof space restriction and increasing apartment-style housing. As such, their performance would depend upon its orientation when mounted in a vertical position. This paper reports the results of outdoor tests conducted on natural convection U-tube solar water heaters oriented towards different directions. Long and short term test procedures were employed to allow us to compare their performances as if they were tested simultaneously side-by-side.
文摘The article is devoted to decision-making in the control and design of autonomous heat supply systems with tubular gas heaters.The results of mathematical modelling and optimization of tubular gas heaters(TGN)are known.Tubular gas heaters are an extension of the term“infrared tubular gas heaters”.The main elements are:a gas burner,a tubular heater inside which gas combustion products with air move,and a mechanical fan(supply or exhaust),which ensures the movement of the coolant inside the tubular part and its removal outside.There are a number of new technical solutions that expand the scope of tubular gas heaters,for example,tubular gas heaters on pellets.Mathematical models of tubular heaters on pellets and solutions to the problems of optimal design of tubular heaters of linear structure are known.Another possible structure of tubular gas heaters is heaters with recirculation of the heating gas-air medium.Optimisation of such pellet heaters has not been performed before,which determined the subject of this paper.The article is devoted to the presentation of the method of optimization of the design solution for tubular heaters taking into account recirculation under the existing constraints.The novelty of the optimization lies in the use of a quasi-two-dimensional mathematical model for the hydraulic circuit of the heater.An evolutionary search algorithm with binary choice functions is used for numerical search of solutions,for which convergence with probability 1 to the optimal solution is shown.The algorithm contains two consecutive functions:the function of so-lution generation and the function of solution selection.The function of solution generation is built largely independently of the content of the problem to be solved,while the function of selection is built in such a way that the resulting binary selection relation is completely determined by the requirement of finding the necessary solution.The resulting binary selection relation includes both the selection components of the available constraints and the basic optimiztion requirement.
基金supported by National Natural Science Foundation of China (No. 51407077)Fundamental Research Funds for the Central Universities of China (No. 2017MS095)Technology Project of State Grid Corporation of China Headquarter (No. 5204BB16000F)
文摘Wind power curtailment is of great importance with the increase of large-scale wind power connected to the grid. A new concept of redundant wind power accommodated by dispatching electric water heaters(EWHs) is developed in the paper. Precise predictions of wind power and EWHs load power are the basis for this work. A hybrid multi-kernel prediction approach integrating an adaptive fruit fly optimization algorithm(AFOA)and multi-kernel relevance vector machine(MKRVM) is proposed to deal with the sample distribution of multisource heterogeneous features uncovered by an energy entropy method, where AFOA is used to determine the kernel parameters in MKRVM adaptively and avoid the arbitrariness. For the large computation of the prediction approach, parallel computation based on the Hadoop cluster is used to accelerate the calculation. Then, an economic dispatching model for accommodating wind power is built taking into account the penalty of curtailed wind power and the operation cost of EWHs. The proposedscheme is implemented in an intelligent residential district.The results show that the optimization performance of the hybrid prediction approach is superior to those of four usual optimization algorithms in this case. Regular or orderly scheduling of EWHs enables accommodation of superfluous wind power and reduces dispatch cost.
基金the National Key R&D Program(2022YFB3603800)the National Natural Science Foundation of China(52121002,U21A6002)+1 种基金Tianjin Natural Science Foundation(20JCJQJC00300)the Fundamental ResearchFunds forthe Central Universities.
文摘The organic cocrystal strategy has provided a convenient and efficient platform for preparing organic photothermal materials.However,the rapidly directional preparation of cocrystals with desirable photothermal properties remains challenging due to a lack of suitable design ideas.Here,two new photothermal cocrystals,MTC and MFC,based on acceptor molecules(TCNQ and F4TCNQ)with different electron-withdrawing capacities were quickly prepared by the coprecipitation method,aiming to explore the effect of charge transfer(CT)interaction on photothermal properties.Compared with MTC,the stronger intermolecular CT interaction in MFC facilitates extending the absorption range(from the NIR-I to the NIR-II region)and enhancing the non-radiative transition process.Under the 808 nm laser irradiation,the photothermal conversion efficiency(PCE)of MFC is 54.6%,whereas MTC displays a mere 36.8%.The MFC cocrystal was further combined with a flexible polymer substrate(HPDMS)to prepare a flexible wearable heater(HPDMS@MFC),which exhibits excellent NIR-II photothermal performance.This work points out a research direction for the rapid assembly of efficient photothermal cocrystals and additionally provides an extensive application prospect for organic photothermal cocrystals in the field of wearable devices.
基金This work was financially supported by the National Basic Research Program of China (No. 2012CB932303), the National Natural Science Foundation of China (No. 61301036), Shanghai Municipal Natural Science Foundation (Nos. 13ZR1463600 and 13XD1403900),Youth Innovation Promotion Association CAS (No. 2014226), and the Shanghai Key Basic Research Project (No. 16JC1402300).
文摘In spite of the recent successful demonstrations of flexible and transparent film heaters, most heaters with high optical transmittance and low applied direct current (DC) voltage are silver nanowire (Ag NW)-based or silver grid-based. In this study, flexible and stretchable copper nanowire (Cu NW)-based transparent film heaters were fabricated through a solution-based process, in which a thin layer of hydrophobic polymers was encapsulated on the Cu NW films. The thin polymer layer protected the films from oxidation under harsh testing conditions, i.e., high temperature, high humidity, and acidic and alkaline environments. The films exhibited remarkable performance, a wide operating temperature range (up to 150 ℃), and a high heating rate (14 ℃/s). Defrosting and wearable thermotherapy demonstrations of the Cu NW film heaters were carried out to investigate their practicality. The Cu NW-based film heaters have potential as reliable and low-cost film heaters.
文摘In just one and half minutes,more than fifty thousand died due to the 7.7 and 7.6 magnitude earthquakes that struck Turkey’s southeast on February 6,2023;thousands of families who barely escaped struggled to survive in the freezing weather.A warm shelter was the most basic requirement of these families.Container buildings are a rapid and easy solution to this issue.However,there is a need for a more effective and safe heating option than a wood fire for these buildings.In this study,cabin heaters,which allow truck drivers to warm up when they park their vehicles to sleep,are specially optimized for emergency shelters after an earthquake.An optimized fuzzy controller was developed to use in such buildings,which allows an air–fuel ratio in the combustion chamber of the cabin heater to be controlled adaptively based on system dynamics to get lower carbon emissions and fuel consumption.The TRNSYS software was used to establish the transient simulation model of a cabin heater with a capacity of 4 kW for a typical 21 m^(2) shelter building in Turkey’s cold regions.The developed fuzzy controller carried out the heating process of this shelter from the 15th of November to the 15th of March.Instead of using expert knowledge,the Gray Wolf Optimization(GWO)method was applied to optimize the fuzzy controller parameters developed for the cabin heater.With the optimized fuzzy controller,the fuel consumption at the end of the heating season was reduced by an average of 0.2 L/h,and the cabin heater’s efficiency increased by more than 13%.Our simulation results show that the intelligent controller we developed could improve diesel fuel combustion efficiency by up to 85%.