Team Formation(TF)is considered one of the most significant problems in computer science and optimization.TF is defined as forming the best team of experts in a social network to complete a task with least cost.Many r...Team Formation(TF)is considered one of the most significant problems in computer science and optimization.TF is defined as forming the best team of experts in a social network to complete a task with least cost.Many real-world problems,such as task assignment,vehicle routing,nurse scheduling,resource allocation,and airline crew scheduling,are based on the TF problem.TF has been shown to be a Nondeterministic Polynomial time(NP)problem,and high-dimensional problem with several local optima that can be solved using efficient approximation algorithms.This paper proposes two improved swarm-based algorithms for solving team formation problem.The first algorithm,entitled Hybrid Heap-Based Optimizer with Simulated Annealing Algorithm(HBOSA),uses a single crossover operator to improve the performance of a standard heap-based optimizer(HBO)algorithm.It also employs the simulated annealing(SA)approach to improve model convergence and avoid local minima trapping.The second algorithm is the Chaotic Heap-based Optimizer Algorithm(CHBO).CHBO aids in the discovery of new solutions in the search space by directing particles to different regions of the search space.During HBO’s optimization process,a logistic chaotic map is used.The performance of the two proposed algorithms(HBOSA)and(CHBO)is evaluated using thirteen benchmark functions and tested in solving the TF problem with varying number of experts and skills.Furthermore,the proposed algorithms were compared to well-known optimization algorithms such as the Heap-Based Optimizer(HBO),Developed Simulated Annealing(DSA),Particle SwarmOptimization(PSO),GreyWolfOptimization(GWO),and Genetic Algorithm(GA).Finally,the proposed algorithms were applied to a real-world benchmark dataset known as the Internet Movie Database(IMDB).The simulation results revealed that the proposed algorithms outperformed the compared algorithms in terms of efficiency and performance,with fast convergence to the global minimum.展开更多
The concept of smart healthcare has seen a gradual increase with the expansion of information technology.Smart healthcare will use a new generation of information technologies,like artificial intelligence,the Internet...The concept of smart healthcare has seen a gradual increase with the expansion of information technology.Smart healthcare will use a new generation of information technologies,like artificial intelligence,the Internet of Things(IoT),cloud computing,and big data,to transformthe conventional medical system in an all-around way,making healthcare highly effective,more personalized,and more convenient.This work designs a new Heap Based Optimization with Deep Quantum Neural Network(HBO-DQNN)model for decision-making in smart healthcare applications.The presented HBO-DQNN modelmajorly focuses on identifying and classifying healthcare data.In the presented HBO-DQNN model,three stages of operations were performed.Data normalization is applied to pre-process the input data at the initial stage.Next,the HBO algorithm is used in the second stage to choose an optimal set of features from the healthcare data.At last,the DQNN model is exploited for healthcare data classification.A series of experiments were carried out to portray the promising classifier results of the HBO-DQNN model.The extensive comparative study reported the improvements of the HBO-DQNN method over other existing models with maximum accuracy of 97.05%and 95.72%under the colon cancer and lymphoma dataset.展开更多
文摘Team Formation(TF)is considered one of the most significant problems in computer science and optimization.TF is defined as forming the best team of experts in a social network to complete a task with least cost.Many real-world problems,such as task assignment,vehicle routing,nurse scheduling,resource allocation,and airline crew scheduling,are based on the TF problem.TF has been shown to be a Nondeterministic Polynomial time(NP)problem,and high-dimensional problem with several local optima that can be solved using efficient approximation algorithms.This paper proposes two improved swarm-based algorithms for solving team formation problem.The first algorithm,entitled Hybrid Heap-Based Optimizer with Simulated Annealing Algorithm(HBOSA),uses a single crossover operator to improve the performance of a standard heap-based optimizer(HBO)algorithm.It also employs the simulated annealing(SA)approach to improve model convergence and avoid local minima trapping.The second algorithm is the Chaotic Heap-based Optimizer Algorithm(CHBO).CHBO aids in the discovery of new solutions in the search space by directing particles to different regions of the search space.During HBO’s optimization process,a logistic chaotic map is used.The performance of the two proposed algorithms(HBOSA)and(CHBO)is evaluated using thirteen benchmark functions and tested in solving the TF problem with varying number of experts and skills.Furthermore,the proposed algorithms were compared to well-known optimization algorithms such as the Heap-Based Optimizer(HBO),Developed Simulated Annealing(DSA),Particle SwarmOptimization(PSO),GreyWolfOptimization(GWO),and Genetic Algorithm(GA).Finally,the proposed algorithms were applied to a real-world benchmark dataset known as the Internet Movie Database(IMDB).The simulation results revealed that the proposed algorithms outperformed the compared algorithms in terms of efficiency and performance,with fast convergence to the global minimum.
基金This research work was funded by Institutional Fund Projects under grant no.(IFPIP:488-611-1443)Therefore,the authors gratefully acknowledge technical and financial support provided by Ministry of Education and Deanship of Scientific Research(DSR),King Abdulaziz University(KAU),Jeddah,Saudi Arabia.
文摘The concept of smart healthcare has seen a gradual increase with the expansion of information technology.Smart healthcare will use a new generation of information technologies,like artificial intelligence,the Internet of Things(IoT),cloud computing,and big data,to transformthe conventional medical system in an all-around way,making healthcare highly effective,more personalized,and more convenient.This work designs a new Heap Based Optimization with Deep Quantum Neural Network(HBO-DQNN)model for decision-making in smart healthcare applications.The presented HBO-DQNN modelmajorly focuses on identifying and classifying healthcare data.In the presented HBO-DQNN model,three stages of operations were performed.Data normalization is applied to pre-process the input data at the initial stage.Next,the HBO algorithm is used in the second stage to choose an optimal set of features from the healthcare data.At last,the DQNN model is exploited for healthcare data classification.A series of experiments were carried out to portray the promising classifier results of the HBO-DQNN model.The extensive comparative study reported the improvements of the HBO-DQNN method over other existing models with maximum accuracy of 97.05%and 95.72%under the colon cancer and lymphoma dataset.