In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve ...In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry.展开更多
In this paper, we observe the generalized Harmonic numbers H<sub>n,k,r</sub> (α,β). Using generating function, we investigate some new identities involving generalized Harmonic numbers H<sub>n,k,r&...In this paper, we observe the generalized Harmonic numbers H<sub>n,k,r</sub> (α,β). Using generating function, we investigate some new identities involving generalized Harmonic numbers H<sub>n,k,r</sub> (α,β) with Changhee sequences, Daehee sequences, Degenerate Changhee-Genoocchi sequences, Two kinds of degenerate Stirling numbers. Using Riordan arrays, we explore interesting relations between these polynomials, Apostol Bernoulli sequences, Apostol Euler sequences, Apostol Genoocchi sequences.展开更多
We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue a...We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue and eigenfunction for such a system are given, they have the same forms as those for the usual harmonic oscillator with constant mass. The coherent state and its properties corresponding effective potentials for several mass functions, for the system with PDM are also discussed. We give the the systems with such potentials are isospectral to the usual harmonic oscillator.展开更多
The first-passage failure of a single-degree-of-freedom hysteretic system with non- local memory is investigated. The hysteretic behavior is described through a Preisach model with excitation selected as Gaussian whit...The first-passage failure of a single-degree-of-freedom hysteretic system with non- local memory is investigated. The hysteretic behavior is described through a Preisach model with excitation selected as Gaussian white noise. First, the equivalent nonlinear non-hysteretic sys- tem with amplitude-dependent damping and stiffness coefficients is derived through generalized harmonic balance technique. Then, equivalent damping and stiffness coefficients are expressed as functions of system energy by using the relation of amplitude to system energy. The stochastic aver- aging of energy envelope is adopted to accept the averaged It5 stochastic differential equation with respect to system energy. The establishing and solving of the associated backward Kolmogorov equation yields the reliability function and probability density of first-passage time. The effects of system parameters on first-passage failure are investigated concisely and validated through Monte Carlo simulation.展开更多
We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient p...We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.展开更多
First-passage failure of multiple-degree-of-freedom nonlinear oscillators with lightly nonlinear dampings and strongly nonlinear stiffness subject to additive and/or parametric Gaussian white noise excitations is stud...First-passage failure of multiple-degree-of-freedom nonlinear oscillators with lightly nonlinear dampings and strongly nonlinear stiffness subject to additive and/or parametric Gaussian white noise excitations is studied. First, by using the stochastic averaging method based on the generalized harmonic functions, the averaged It stochastic differential equation for the amplitudes of the nonlinear oscillators can be derived. Then the associated backward Kolmogorov equation of the conditional reliability function is established, and the conditional reliability is approximately expressed as a series expansion in terms of Kummer functions with time-dependent coefficients. By using the Galerkin method, the time dependent coefficients of the associated conditional reliability function can be solved by a set of differential equations. Finally, the proposed procedure is applied to Duffing-Van der Pol systems under external and/or parametric excitations of Gaussian white noises. The results are also verified by those obtained from Monte Carlo simulation of the original system. The effects of system parameters on first-passage failure are discussed briefly.展开更多
基金supported in part by NSF of China N.10871131The Science and Technology Commission of Shanghai Municipality,Grant N.075105118+1 种基金Shanghai Leading Academic Discipline Project N.T0401Fund for E-institute of Shanghai Universities N.E03004.
文摘In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry.
文摘In this paper, we observe the generalized Harmonic numbers H<sub>n,k,r</sub> (α,β). Using generating function, we investigate some new identities involving generalized Harmonic numbers H<sub>n,k,r</sub> (α,β) with Changhee sequences, Daehee sequences, Degenerate Changhee-Genoocchi sequences, Two kinds of degenerate Stirling numbers. Using Riordan arrays, we explore interesting relations between these polynomials, Apostol Bernoulli sequences, Apostol Euler sequences, Apostol Genoocchi sequences.
基金supported by the National Natural Science Foundation of China under Grant Nos.10125521 and 60371013the 973 National Basic Pesearch and Development Program of China under Contract No.G2000077400
文摘We study the generalized harmonic oscillator that has both the position-dependent mass and the potential depending on the form of mass function in a more general framework. The explicit expressions of the eigenvalue and eigenfunction for such a system are given, they have the same forms as those for the usual harmonic oscillator with constant mass. The coherent state and its properties corresponding effective potentials for several mass functions, for the system with PDM are also discussed. We give the the systems with such potentials are isospectral to the usual harmonic oscillator.
基金supported by the National Natural Science Foundation of China(Nos.11025211,11302064 and 11202181)Zhejiang Provincial Natural Science Foundation of China(No.LQ12A02001)the special fund for the Doctoral Program of Higher Education of China(Nos.20110101110050 and 20120101120171)
文摘The first-passage failure of a single-degree-of-freedom hysteretic system with non- local memory is investigated. The hysteretic behavior is described through a Preisach model with excitation selected as Gaussian white noise. First, the equivalent nonlinear non-hysteretic sys- tem with amplitude-dependent damping and stiffness coefficients is derived through generalized harmonic balance technique. Then, equivalent damping and stiffness coefficients are expressed as functions of system energy by using the relation of amplitude to system energy. The stochastic aver- aging of energy envelope is adopted to accept the averaged It5 stochastic differential equation with respect to system energy. The establishing and solving of the associated backward Kolmogorov equation yields the reliability function and probability density of first-passage time. The effects of system parameters on first-passage failure are investigated concisely and validated through Monte Carlo simulation.
文摘We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.
基金supported by the National Natural Science Foundation of China (Grant No. 11025211)the Natural Science Foundation of Zhejiang Province (Grant No. 26090125)the Special Fund for National Excellent PhD Dissertation
文摘First-passage failure of multiple-degree-of-freedom nonlinear oscillators with lightly nonlinear dampings and strongly nonlinear stiffness subject to additive and/or parametric Gaussian white noise excitations is studied. First, by using the stochastic averaging method based on the generalized harmonic functions, the averaged It stochastic differential equation for the amplitudes of the nonlinear oscillators can be derived. Then the associated backward Kolmogorov equation of the conditional reliability function is established, and the conditional reliability is approximately expressed as a series expansion in terms of Kummer functions with time-dependent coefficients. By using the Galerkin method, the time dependent coefficients of the associated conditional reliability function can be solved by a set of differential equations. Finally, the proposed procedure is applied to Duffing-Van der Pol systems under external and/or parametric excitations of Gaussian white noises. The results are also verified by those obtained from Monte Carlo simulation of the original system. The effects of system parameters on first-passage failure are discussed briefly.