The simulation techniques of hardware-in-loop simulation(HLS) of homing antitank missile based on the personal computer (PC) are discussed. The PC and MCS-96 chip controller employ A/D and D/A boards (with photoelectr...The simulation techniques of hardware-in-loop simulation(HLS) of homing antitank missile based on the personal computer (PC) are discussed. The PC and MCS-96 chip controller employ A/D and D/A boards (with photoelectricity isolation) to transfer measur ment and control information about homing head, gyro and rudder and utilize the digital hand shaking board to build correct communication communication protocol. In order to satisfy the real-time requirement of HLS, this paper first simplifies the aerodynamic data file reasonably, then builds a PC software with C language. The program of the controller part is made with PL/M language. The simulation of HLS based on PC is done with the same sampling period of 10ms as that of YH-F1 and the experiment results are identical to those of digital simulation of the homing anti-tank guided missile.展开更多
In order to facilitate the teaching of industrial processes and experiments on the twin-screw extruder control debugging,and be closer to the actual testing,to reduce the debugging costs and the risk of debugging proc...In order to facilitate the teaching of industrial processes and experiments on the twin-screw extruder control debugging,and be closer to the actual testing,to reduce the debugging costs and the risk of debugging process,the paper designs a hardware-in-loop simulation of twin-screw extruder experiment system which is closer to scene,low cost and high safety.The system through the establishment of twin-screw extruder’s mathematical model on computer to simulate the realistic system and there is hardware practicality in the computer simulation loop.The hardware based on C8051F020 can operate in the simulation loop in real time.In computer software design, we desigh man-machine interface that is intuitive and easy to operate,can reflect twin-screw extruder main operation information vividly.Finally,twin-screw extruder’s 3 heater temperature mathematical model and PID incremental control algorithm are presented.展开更多
FSC (Fractionated Spacecraft Cluster) is a kind of loosely distributed space system which is comprised of multiple physically independent spacecrafts orbiting closely and interactively communicating via wireless net...FSC (Fractionated Spacecraft Cluster) is a kind of loosely distributed space system which is comprised of multiple physically independent spacecrafts orbiting closely and interactively communicating via wireless network. Spaceborne ad-hoc network, as the physical infrastructure for information exchanging, is one of the enabling technologies of FSC. The demonstration of FSC flying supported by ad-hoc network is worth for the sake of proving the rationality of FSC and seeking technological improvements. Considering this, a NNP (Network Node Prototype) for spaceborne ad-hoc network is developed in this paper, which transmits the information required by the FSC cooperation. Four NNPs are then built up and collaborated into a hardware-in-loop simulation system, in which a typical loose satellite cluster flying mission was performed. The simulation results showed that the NNPs can support the inter-satellite communication for satellite cluster flying.展开更多
A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated b...A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.展开更多
This paper described an effective method to implement human & hardware in the loop simulation(HHILS), which is based on MATLAB system and can be used to study human driving actions in the abrupt situation and vehi...This paper described an effective method to implement human & hardware in the loop simulation(HHILS), which is based on MATLAB system and can be used to study human driving actions in the abrupt situation and vehicle stability control(VSC). A hybrid control algorithm, which makes full use of the advantages of robust control and fuzzy logic, was adopted in VSC system. The results of HHILS show that HHILS’ application on the vehicle handling and VSC resarch is feasible. These results also confirm that the handling performance of the vehicle with VSC is improved obviously compared to the vehicle without VSC.展开更多
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ...Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.展开更多
Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth o...Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.展开更多
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn...Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.展开更多
The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggre...The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.展开更多
Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temper...Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs.展开更多
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ...The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.展开更多
The 2025 M_(w)7.7 Myanmar earthquake highlighted the challenge of near-fault seismic intensity field reconstruction due to sparse seismic networks.To address this limitation,a framework was proposed integrating seismi...The 2025 M_(w)7.7 Myanmar earthquake highlighted the challenge of near-fault seismic intensity field reconstruction due to sparse seismic networks.To address this limitation,a framework was proposed integrating seismic wave simulation with a data-constrained finite-fault rupture model.The constraint is implemented by identifying the optimal ground motion models(GMMs)through a scoring system that selects the best-fit GMMs to mid-and far-field China Earthquake Networks Center(CENC)seismic network data;and applying the optimal GMMs to refine the rupture model parameters for near-fault intensity field simulation.The simulated near-fault seismic intensity field reproduces seismic intensities collected from Myanmar’s sparse seismic network and concentrated in≥Ⅷintensity zones within 50 km of the projected fault plane;and identifies abnormal intensity regions exhibiting≥Ⅹintensity along the Meiktila-Naypyidaw corridor and near Shwebo that are attributed to soft soil amplification effects and near-fault directivity.This framework can also be applied to post-earthquake assessments in other similar regions.展开更多
A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocit...A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness.展开更多
文摘The simulation techniques of hardware-in-loop simulation(HLS) of homing antitank missile based on the personal computer (PC) are discussed. The PC and MCS-96 chip controller employ A/D and D/A boards (with photoelectricity isolation) to transfer measur ment and control information about homing head, gyro and rudder and utilize the digital hand shaking board to build correct communication communication protocol. In order to satisfy the real-time requirement of HLS, this paper first simplifies the aerodynamic data file reasonably, then builds a PC software with C language. The program of the controller part is made with PL/M language. The simulation of HLS based on PC is done with the same sampling period of 10ms as that of YH-F1 and the experiment results are identical to those of digital simulation of the homing anti-tank guided missile.
文摘In order to facilitate the teaching of industrial processes and experiments on the twin-screw extruder control debugging,and be closer to the actual testing,to reduce the debugging costs and the risk of debugging process,the paper designs a hardware-in-loop simulation of twin-screw extruder experiment system which is closer to scene,low cost and high safety.The system through the establishment of twin-screw extruder’s mathematical model on computer to simulate the realistic system and there is hardware practicality in the computer simulation loop.The hardware based on C8051F020 can operate in the simulation loop in real time.In computer software design, we desigh man-machine interface that is intuitive and easy to operate,can reflect twin-screw extruder main operation information vividly.Finally,twin-screw extruder’s 3 heater temperature mathematical model and PID incremental control algorithm are presented.
文摘FSC (Fractionated Spacecraft Cluster) is a kind of loosely distributed space system which is comprised of multiple physically independent spacecrafts orbiting closely and interactively communicating via wireless network. Spaceborne ad-hoc network, as the physical infrastructure for information exchanging, is one of the enabling technologies of FSC. The demonstration of FSC flying supported by ad-hoc network is worth for the sake of proving the rationality of FSC and seeking technological improvements. Considering this, a NNP (Network Node Prototype) for spaceborne ad-hoc network is developed in this paper, which transmits the information required by the FSC cooperation. Four NNPs are then built up and collaborated into a hardware-in-loop simulation system, in which a typical loose satellite cluster flying mission was performed. The simulation results showed that the NNPs can support the inter-satellite communication for satellite cluster flying.
基金Project(20050214001) supported by Doctor Foundation of Education Ministry of ChinaProject(GC05A512) and supported by the Program of Heilongjiang Province Science and Technology, ChinaProject(zjg0702-01) supported by the Natural Science Foundation of Heilongjiang Province, China
文摘A controllable hydrostatic thrust bearing was presented to improve rigidity. The bearing worktable poses were controlled by coupling oilfilm thickness of four controllable chambers. The chamber flow can be regulated by electro hydraulic servo valve-control variable pump according to the surface roughness, load, cutting force, and thermal effects of worktable. The mathematical models of the controllable chamber flow, servo variable mechanism and controller were built. The pose control model was established, which contained the kinematics positive and negative solution and control strategy of feedforward and hydraulic cylinder position feedback. Hardware-in-loop simulation experiment was carried out on the electro hydraulic servo test bench by means of the non-linear relation of film thickness and hydraulic cylinder displacement. Hardware-in-loop simulation experiment results show that the controllable bearings exhibit high oilfilm rigidity, the rising time is 0.24 s and the maximum overshoot is 2.23%, and can be applied in high precision heavy machine tool.
文摘This paper described an effective method to implement human & hardware in the loop simulation(HHILS), which is based on MATLAB system and can be used to study human driving actions in the abrupt situation and vehicle stability control(VSC). A hybrid control algorithm, which makes full use of the advantages of robust control and fuzzy logic, was adopted in VSC system. The results of HHILS show that HHILS’ application on the vehicle handling and VSC resarch is feasible. These results also confirm that the handling performance of the vehicle with VSC is improved obviously compared to the vehicle without VSC.
基金Opening Foundation of Key Laboratory of Explosive Energy Utilization and Control,Anhui Province(BP20240104)Graduate Innovation Program of China University of Mining and Technology(2024WLJCRCZL049)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2701)。
文摘Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces.
基金supported by the Research Funding of Hangzhou International Innovation Institute of Beihang Uni-versity,China(No.2024KQ130)the National Natural Science Foundation of China(Nos.52073010 and 52373259).
文摘Recent progress in microwave absorption materials stimulates the extensive exploration of rare earth oxide materials.Herein,we report the synthesis of a hollow sphere-based carbon material compounded with rare earth oxides.Hollow N-doped carbon nano-spheres loaded ceria composites(H-NC@CeO_(2))were designed and prepared by the template method,combined with in-situ coating,pyrolysis and chemical etching.By controlling the loading content of H-NC@CeO_(2)and adjusting the impedance matching of the material,the H-NC@CeO_(2)/PS(polystyrene)composite exhibited a minimum reflection loss(RL)of-50.8 dB and an effective absorption band-width(EAB)of 4.64 GHz at a filler ratio of 20wt%and a thickness of 2 mm.In accordance with measured electromagnetic parameters,simulations using the high frequency structure simulator(HFSS)software were conducted to investigate the impact of the honeycomb structure on the electromagnetic wave performance of H-NC@CeO_(2)/PS.By calculating the surface electric field and the material’s bulk loss density,the mechanism of electromagnetic loss for the honeycomb structure was elaborated.A method for structural design and man-ufacturing of broadband absorbing devices was proposed and a broadband absorber with an EAB of 11.9 GHz was prepared.This study presents an innovative approach to designing advanced electromagnetic(EM)wave absorbing materials with broad absorption band-widths.
基金the National Natural Science Foundation of China(No.52205468)China Postdoctoral Science Foundation(No.2022M710061 and No.2023T160277)Natural Science Foundation of Jiangsu Province(No.BK20210755)。
文摘Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.
基金Funded by the Research Funds of China University of Mining and Technology(No.102523215)。
文摘The pre-wetting of aggregate surface is a means to improve the interface performance of SBS modified asphalt and aggregate.The effect of pre-wetting technology on the interaction between SBS modified asphalt and aggregate was analyzed by molecular dynamics simulation.The diffusion coefficient and concentration distribution of SBS modified asphalt on aggregate surface are included.The simulation results show that the diffusion coefficient of the aggregate surface of SBS modified asphalt is increased by 47.6%and 70.5%respectively after 110#asphalt and 130#asphalt are pre-wetted.The concentration distribution of SBS modified asphalt on the aggregate surface after pre-wetting is more uniform.According to the results of interface energy calculation,the interface energy of SBS modified bitumen and aggregate can be increased by about 5%after pre-wetting.According to the results of molecular dynamics simulation,the pre-wetting technology can effectively improve the interface workability of SBS modified bitumen and aggregate,so as to improve the interface performance.
基金supported by the National Natural Science Foundation of China(Grant No.U21B2062)supported by the Key Laboratory for Carbonate Reservoirs of China National Petroleum Corporation。
文摘Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030001)the National Key Research and Development Program of China(Grant No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.JCKYS2022212004)。
文摘The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2023C01National Natural Science Foundation of China under Grant No.52478570Distinguished Young Scholars Program of the Natural Science Foundation of Heilongjiang Province,China under Grant No.JQ2024E002。
文摘The 2025 M_(w)7.7 Myanmar earthquake highlighted the challenge of near-fault seismic intensity field reconstruction due to sparse seismic networks.To address this limitation,a framework was proposed integrating seismic wave simulation with a data-constrained finite-fault rupture model.The constraint is implemented by identifying the optimal ground motion models(GMMs)through a scoring system that selects the best-fit GMMs to mid-and far-field China Earthquake Networks Center(CENC)seismic network data;and applying the optimal GMMs to refine the rupture model parameters for near-fault intensity field simulation.The simulated near-fault seismic intensity field reproduces seismic intensities collected from Myanmar’s sparse seismic network and concentrated in≥Ⅷintensity zones within 50 km of the projected fault plane;and identifies abnormal intensity regions exhibiting≥Ⅹintensity along the Meiktila-Naypyidaw corridor and near Shwebo that are attributed to soft soil amplification effects and near-fault directivity.This framework can also be applied to post-earthquake assessments in other similar regions.
基金National Natural Science Foundation of China(51971103)Key Research and Development Program in Gansu Province(20YF8GA052)。
文摘A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness.