The extraordinary strength of metal/graphene composites is significantly determined by the characteristic size,distribution and morphology of graphene.However,the effect of the graphene size/distribution on the mechan...The extraordinary strength of metal/graphene composites is significantly determined by the characteristic size,distribution and morphology of graphene.However,the effect of the graphene size/distribution on the mechanical properties and related strengthening mechanisms has not been fully elucidated.Herein,under the same volume fraction and distribution conditions of graphene,molecular dynamics simulations were used to investigate the effect of graphene sheet size on the hardness and deformation behavior of Cu/graphene composites under complex stress field.Two models of pure single crystalline Cu and graphene fully covered Cu matrix composite were constructed for comparison.The results show that the strengthening effect changes with varying the graphene sheet size.Besides the graphene dislocation blocking effect and the load-bearing effect,the deformation mechanisms change from stacking fault tetrahedron,dislocation bypassing and dislocation cutting to dislocation nucleation in turn with decreasing the graphene sheet size.The hardness of Cu/graphene composite,with the graphene sheet not completely covering the metal matrix,can even be higher than that of the fully covered composite.The extra strengthening mechanisms of dislocation bypassing mechanism and the stacking fault tetrahedra pinning dislocation mechanism contribute to the increase in hardness.展开更多
Hardness is widely regarded as a critical factor influencing the whole texture of fish flesh.The objective of this study was to elucidate the regulatory mechanism underlying muscle hardness in hybrid bream(BBTB,Megalo...Hardness is widely regarded as a critical factor influencing the whole texture of fish flesh.The objective of this study was to elucidate the regulatory mechanism underlying muscle hardness in hybrid bream(BBTB,Megalobrama amblycephala♀×Culter alburnus♂).A comparison of the physiological features of high hardness(HH)and low hardness(LH)muscle revealed that the former had higher contents of collagen I and lower muscle fiber diameter.Transcriptomic data revealed that the myofiber assembly pathway and the HIF-1 signaling pathway were activated in HH muscle.At the metabolic level,the categories of amino acids and lipids were the principal differentially abundant metabolites between the HH and LH muscle.The detection of amino acid profiles further revealed significant differences in amino acid metabolism between the HH and LH muscles,with the HH muscle having higher levels of amino acids than the LH muscle,especially hydroxypro-line(Hyp).Furthermore,through supplementation of Hyp in BBTB myoblasts,the results indicated that 0.8 mmol/L Hyp increased the proliferation,differentiation,migration,and collagen synthesis of myoblasts.Finally,BBTB was treated with Hyp intraperitoneally for 15 days.The results revealed that 0.1 g/kg Hyp significantly increased muscle hardness,myofiber density,myofibrillar protein synthesis,and HIF-1 protein content.The results obtained in this study indicated that Hyp supplementation promoted collagen synthesis and proliferation of myoblast and muscle fibers in the BBTB,which may be induced by activation of the transcription factor HIF1 and contributes to the impacts of Hyp on improvements in muscle hardness in the BBTB.展开更多
The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis ...The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis procedures were compared such as Oliver&Pharr and nominal hardness-based methods,which require area function of the indenter,and other methods based on energy,displacement,contact depth,and contact stiffness,which do not require calibration of the indenter.Elastic recovery of the imprint by the Knoop indenter was also utilized to evaluate elastic moduli of brittle solids.Expressions relating HIT/Er and dimensionless nanoindentation variables(e.g.,the ratio of elastic work over total work and the ratio of permanent displacement over maximum displacement)are found to be nonlinear rather than linear for brittle solids.The plastic hardness Hp of brittle solids(except traditional glasses)extracted based on Er is found to be proportional to E_(r)√H_(IT).展开更多
Compared to traditional superhard materials with high electron density and short,strong covalent bonds,alloy materials mainly composed of metallic bonding structures typically have great toughness and lower hardness.B...Compared to traditional superhard materials with high electron density and short,strong covalent bonds,alloy materials mainly composed of metallic bonding structures typically have great toughness and lower hardness.Breaking through the limits of alloy materials is a preface and long-term topic,which is of great significance and value for improving the comprehensive mechanical properties of alloy materials.Here,we report on the discovery of a cubic alloy semiconducting material Ti_(2)Co with a large Vickers of hardness K_(v)^(exp)∼6.7GPa and low fracture toughness of K_(IC)^(exp)∼1.51MPa·m^(1/2).Unexpectedly,the K_(v)^(exp)∼6.7GPa is nearly triple of the K_(v)^(cal)∼2.66GPa predicted by density functional theory(DFT)calculations and theK_(IC)^(exp)∼1.51MPa·m^(1/2)is about one or two orders of magnitude smaller than that of ordinary titanium alloy materials(K_(IC)^(exp)∼30-120MPa·m^(1/2)).These specifications place Ti_(2)Co far from the phase space of the known alloy materials.Upon incorporation of oxygen into structural void positions,both values were simultaneously improved for Ti_(4)Co_(2)O to∼9.7GPa and∼2.19MPa·m^(1/2),respectively.Further DFT calculations on the electron localization function of Ti_(4)Co_(2)X(X=B,C,N,O)vs.the interstitial elements indicate that these simultaneous improvements originate from the coexistence of Ti-Co metallic bonds,the emergence of newly oriented Ti-X covalent bonds,and the increase of electron concentration.Moreover,the large difference between K_(v)^(exp)and K_(v)^(cal)of Ti_(2)Co suggests underlying mechanism concerning the absence of the O(16d)or Ti_(2)-O bonds in the O-(Ti_(2))_(6) octahedron.This discovery proposes a new pathway to simultaneously improve the comprehensive mechanical performances and illuminates the path of exploring superconducting materials with excellent mechanical performances.展开更多
This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectil...This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectiles,these plates tend to fail through adiabatic shear plugging which significantly reduces their ballistic resistance.To address this effect,an approach for determining effective thickness was defined and incorporated into the predictive model.Ballistic impact tests were performed to assess the modification's validity,in which ARMOX 500T steel plates were subjected to perpendicular impacts from 7.62×39 mm steel-cored rounds under various velocities.Frequent target failure by soft plugging was observed,as well as the brittle shatter of the hard steel core.Key properties of the recovered plugs including their mass,length and diameter were measured and reported along with the projectiles'residual velocities.Additionally,independent data from the open literature were included in the analysis for further validation.The original Forrestal-Warren model and the novel effective thickness modification were then used to establish the relationship between impact and residual velocities,as well as to determine the ballistic limit velocity.The comparison revealed that the proposed approach significantly improves the model's accuracy,showing a strong correlation with experimental data and reducing deviations to within a few percent.This enhancement highlights the potential of the effective thickness term,which could also be applied to other predictive models to extend their applicability range.Further exploration into other armor steels and impact conditions is recommended to assess the method's versatility.展开更多
1.Introduction The synthesis of bulk nanostructured multiphase(NM)mate-rials with extreme properties such as high hardness and strength is one of the most interesting research topics in materials science and engineeri...1.Introduction The synthesis of bulk nanostructured multiphase(NM)mate-rials with extreme properties such as high hardness and strength is one of the most interesting research topics in materials science and engineering[1].At present,NM alloys can be produced by several synthesis methods,including sintering of nanocomposites[2,3],physical or chemical vapour deposition(PVD or CVD)[4],crystallization of metallic glasses[5],and severe plastic deforma-tion(SPD)[6-8].However,industry applications of bulk NM alloys produced by these methods are significantly restricted by their ge-ometrical and size limitations.Thus,the fabrication of large-scale NM alloys remains challenging.展开更多
Effects of Cr3C2,VC and La2O3 additions on the WC grain morphology,hardness and toughness of WC-10Co alloys were investigated.To intensify the grain growth driving force,nano W and nano C,instead of the conventionally...Effects of Cr3C2,VC and La2O3 additions on the WC grain morphology,hardness and toughness of WC-10Co alloys were investigated.To intensify the grain growth driving force,nano W and nano C,instead of the conventionally used WC,were used as the starting materials.To obtain a three-dimensional WC grain morphology,the natural sinter skins of the alloys were observed directly by scanning electron microscopy.It is shown that the additions have a strong ability in regulating the WC grain morphological and grain size distribution characteristics and the combinations of hardness and toughness.Due to the formation of regular and homogeneous triangular platelet WC grains,WC-10Co-0.6Cr3C2-0.06La2O3 alloy shows an excellent combination of hardness and toughness.The morphological regulation mechanism,the relationship between the WC grain morphology and the properties were discussed.展开更多
The microstructure and hardness of the stir zone (SZ) with different welding heat inputs were investigated for friction stir-welded 2024-T3 aluminum by transmission electron microscopy, differential scanning calorim...The microstructure and hardness of the stir zone (SZ) with different welding heat inputs were investigated for friction stir-welded 2024-T3 aluminum by transmission electron microscopy, differential scanning calorimeter and Vickers micro-hardness test. The results show that welding heat input has a significant effect on the hardness of the SZ. Under high welding heat input condition, a higher welding speed is beneficial for improving the hardness of the SZ. However, when the welding heat input is low, the hardness of the SZ elevates with increasing the rotation speed. The hardness of the SZ decreases after post-welded heat treatment due to overaging. The joints welded at 500 r/min and 100 mm/min show a high resistance to overaging. The reduction of hardness in the SZ is only 3.8%, while in other joints, the reduction is more than 10%. The morphology of strengthening precipitates plays important roles for the improvement of hardness.展开更多
The effect of electrolyte on settling behavior of kaolinite was studied. Effects of hard water on selective flocculation of diasporic bauxite was tested and the measures were taken to eliminate the effects of Ca2+ an...The effect of electrolyte on settling behavior of kaolinite was studied. Effects of hard water on selective flocculation of diasporic bauxite was tested and the measures were taken to eliminate the effects of Ca2+ and Mg2+ in hard water. The results indicated that, not only the concentration of electrolyte ions but also the ionic valence of the electrolyte ions affects the settling behavior of kaolinite; hard water significantly affects its selective flocculation owing to Ca2+ and Mg2+; general dispersants could not eliminate the effects of Ca2+ and Mg2+. Self-made softening agent in our lab could weaken or eliminate the effects of hard water on flocculation processes. The results of molecular dynamics simulation show that softening agent molecules could restrict Ca2+ and prevent them from playing their roles, so as to eliminate the effects. The continuous pilot experiment results of bauxite flocculation were even better than those obtained in laboratory.展开更多
Some factors that affect the experimental results in nanoindentation tests such as the contact depth,contact area,load and loading duration are analyzed in this article. Combining with the results of finite element nu...Some factors that affect the experimental results in nanoindentation tests such as the contact depth,contact area,load and loading duration are analyzed in this article. Combining with the results of finite element numerical simulation,we find that the creep property of the tested material is one of the important factors causing the micron indentation hardness descending with the increase of indentation depth. The analysis of experimental results with different indentation depths demonstrates that the hardn...展开更多
The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increa...The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increases the hardness values of the matrix at both room and high temperature and improves the wear resistance of the material.The hardness values and the wear resistance of the composite rise with the increase of the particle volume fraction or the decrease of the particle size.The raising of test temperature results in a rapid descending of its hardness values.However, the addition of Al2O3P improves the property of high temperature resistance of Zn-Al alloys significantly.Moreover,the effect of quenching, tempering or cycling heat treatment on the hardness values of the composite is also studied.展开更多
H-gate and closed-gate PD SOI nMOSFETs are fabricated on SIMOX substrate,and the influence of floating body effect on the radiation hardness is studied.All the subthreshold characteristics of the devices do not change...H-gate and closed-gate PD SOI nMOSFETs are fabricated on SIMOX substrate,and the influence of floating body effect on the radiation hardness is studied.All the subthreshold characteristics of the devices do not change much after radiation of the total dose of 106rad(Si).The back gate threshold voltage shift of closed-gate is about 33% less than that of H-gate device.The reason should be that the body potential of the closed-gate device is raised due to impact ionization,and an electric field is produced across the BOX.The floating body effect can improve the radiation hardness of the back gate transistor.展开更多
In this paper, single machine scheduling problems with variable processing time is discussed according to published instances of management engineering. Processing time of a job is the product of a “coefficient' ...In this paper, single machine scheduling problems with variable processing time is discussed according to published instances of management engineering. Processing time of a job is the product of a “coefficient' of the job on position i and a “normal' processing time of the job. The criteria considered is to minimize scheduled length of all jobs. A lemma is proposed and proved. In no deadline constrained condition, the problem belongs to polynomial time algorithm. It is proved by using 3 partition that if the problem is deadline constrained, its complexity is strong NP hard. Finally, a conjuncture is proposed that is to be proved.展开更多
Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect a...Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect and indentation size effect were explored.The indentation hardness was fitted using the Nix-Gao model by considering the scaling factor.The results show that the scaling factor is barely correlated with the grain/sub-grain size.The interaction between the plastically deformed zone(PDZ) boundary and the grain/sub-grain boundary is believed to be the reason that leads to an increase of the measured hardness at the specific depths.Results also indicate that the area of the PDZ is barely correlated with the grain/sub-grain size,and the indentation hardness starts to stabilize once the PDZ expands to the dimension of an individual grain/sub-grain.展开更多
The microstructure of a Cu-Zn alloy treated under different high pressures was investigated by means of metallographic, scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffracti...The microstructure of a Cu-Zn alloy treated under different high pressures was investigated by means of metallographic, scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD), and the hardness of the Cu-Zn alloy was also measured. The results show that the ct phase with a smaller grain size, different shapes, and random distribution appears in the Cu-Zn alloy during the solid-state phase transformation generation in the temperature range of 25-750℃ and the pressure range of 0-6 GPa. The amount of residual α phase in the microstructure decreases and then increases with increasing pressure. Under a high pressure of 3 GPa, the least volume fraction of residual a phase was obtained, and under a high pressure of 6 GPa, the changes of the microstructure of the Cu-Zn alloy were not obvious. In addition, high pressure can increase the hardness of the Cu-Zn alloy, but it cannot generate any new phase.展开更多
The microstructures and hardness of pure Al samples subjected to plastic deformation with different tem- peratures and strain rates were investigated. The results showed that the strain-induced grain refinement is sig...The microstructures and hardness of pure Al samples subjected to plastic deformation with different tem- peratures and strain rates were investigated. The results showed that the strain-induced grain refinement is significantly benefited by increasing strain rate and reducing deformation temperature. The saturated size of refined subgrains in Al can be as small as about 240 nm in cryogenic dynamic plastic deformation (DPD). Grain boundaries of the DPD Al samples are low-angle boundaries due to suppression of dynamic recovery during deformation. Agreement of the measured hardness with the empirical Hall-Petch relation extrapolated from the coarse-grained Al implies that the low-angle boundaries can contribute to strengthening as effective as the conventional grain boundaries.展开更多
This article presents the microstructure and hardness variation of an Al 8.5Fe-1.3V 1.7Si (wt%, FVS0812) alloy after selective laser melting (SLM) modification. Three zones were distinguished across the melting po...This article presents the microstructure and hardness variation of an Al 8.5Fe-1.3V 1.7Si (wt%, FVS0812) alloy after selective laser melting (SLM) modification. Three zones were distinguished across the melting pool of the SLM-processed FVS0812 alloy: the laser melted zone (LMZ), the melting pool border, and the heat affected zone (HAZ) in the previously deposited area around the melting pool. Inside the LMZ, either an extremely fine cellular-dendritic structure or a mixture zone of the α-Al matrix and nanoscale Al12(Fe,V)3Si particles appeared. With a decreased laser beam scanning speed, the cellular-dendritic structure zone within the LMZ shrank significantly while the mixture zone expanded. The α-Al and Al12(Fe,V)3Si mixture zone was also observed in the HAZ, but another phase, submicron θ-Al13Fe4 particles with rectangular or hexagonal shapes, formed along the melting pool border. Microhardness tests indicated that the hardness of the SLM-processed FVS0812 samples far exceeded that of the as-cast FVS0812 alloy.展开更多
The influence of Cu content on the microstructure and hardness of near-eutectic Al-Si-xCu(x = 2%,3%,4% and 5%) was investigated.After melting Al-based alloys with different Cu contents,alloys were cast in green sand...The influence of Cu content on the microstructure and hardness of near-eutectic Al-Si-xCu(x = 2%,3%,4% and 5%) was investigated.After melting Al-based alloys with different Cu contents,alloys were cast in green sand molds at 690 °C and solidified.The solution treatment was performed at 500 °C for 7 h and then the specimens were cooled by water quenching.The samples were respectively aged at 190 °C for 5,10 and 15 h to observe the effect of aging time on the hardness of matrix.Also differential thermal analysis was used to obtain the transition temperature of the equilibrium phases at cooling rate of 30 K/min and to determine the effect of Cu content on the formation of quaternary eutectic phases and the melting point of-(Al) + Si.The results show that as Cu content in the alloy increases,the hardness of matrix increases due to precipitation hardening,the melting point of -(Al) + Si decreases and the amount of these eutectic phases increases,quaternary eutectic phase with melting point of 507 -C forms when Cu content is more than 2%.展开更多
Research has been conducted about the hardness prediction for the carburizing and quenching process based on an optimized hardness simulation model,in accordance with the calculation rule of mixed phases.The coupling ...Research has been conducted about the hardness prediction for the carburizing and quenching process based on an optimized hardness simulation model,in accordance with the calculation rule of mixed phases.The coupling field model incorporates carburizing field analysis,temperature field analysis,phase transformation kinetics analysis and a modified hardness calculation model.In determination of the calculation model for hardness,calculation equations are given to be applied to low carbon content(x(C)<0.5%) for the child phases and the martensite hardness is calculated for high carbon content(x(C)>0.5%) in alloy.Then,the complete carburizing-quenching hardness calculation model is built,and the hardness simulation data are corrected considering the influence of residual austenite(RA) on hardness.Hardness simulations of the carburizing and quenching process of 17CrNiMo6 samples have been performed using DEFORM-HT_V10.2 and MATLAB R2013 a.Finally,a series of comparisons of simulation results and measured values show a good agreement between them,which validates the accuracy of the proposed mathematical model.展开更多
基金Foundation of Northwest Institute for Nonferrous Metal Research(ZZXJ2203)Capital Projects of Financial Department of Shaanxi Province(YK22C-12)+3 种基金Innovation Capability Support Plan in Shaanxi Province(2023KJXX-083)Key Research and Development Projects of Shaanxi Province(2024GXYBXM-351,2024GX-YBXM-356)National Natural Science Foundation of China(62204207,12204383)Xi'an Postdoctoral Innovation Base Funding Program。
文摘The extraordinary strength of metal/graphene composites is significantly determined by the characteristic size,distribution and morphology of graphene.However,the effect of the graphene size/distribution on the mechanical properties and related strengthening mechanisms has not been fully elucidated.Herein,under the same volume fraction and distribution conditions of graphene,molecular dynamics simulations were used to investigate the effect of graphene sheet size on the hardness and deformation behavior of Cu/graphene composites under complex stress field.Two models of pure single crystalline Cu and graphene fully covered Cu matrix composite were constructed for comparison.The results show that the strengthening effect changes with varying the graphene sheet size.Besides the graphene dislocation blocking effect and the load-bearing effect,the deformation mechanisms change from stacking fault tetrahedron,dislocation bypassing and dislocation cutting to dislocation nucleation in turn with decreasing the graphene sheet size.The hardness of Cu/graphene composite,with the graphene sheet not completely covering the metal matrix,can even be higher than that of the fully covered composite.The extra strengthening mechanisms of dislocation bypassing mechanism and the stacking fault tetrahedra pinning dislocation mechanism contribute to the increase in hardness.
基金supported by the National Key Research and Development Plan Program of China(2022YFD2400600/2022YFD2400601/2022YFD2400603)the Science and Technology Innovation Program of Hunan Province(Grant No.2023RC1072)+1 种基金Scientific Research Fund of Hunan Provincial Education Department(Grant No.24B0799)the earmarked fund for HARS(HARS-07).
文摘Hardness is widely regarded as a critical factor influencing the whole texture of fish flesh.The objective of this study was to elucidate the regulatory mechanism underlying muscle hardness in hybrid bream(BBTB,Megalobrama amblycephala♀×Culter alburnus♂).A comparison of the physiological features of high hardness(HH)and low hardness(LH)muscle revealed that the former had higher contents of collagen I and lower muscle fiber diameter.Transcriptomic data revealed that the myofiber assembly pathway and the HIF-1 signaling pathway were activated in HH muscle.At the metabolic level,the categories of amino acids and lipids were the principal differentially abundant metabolites between the HH and LH muscle.The detection of amino acid profiles further revealed significant differences in amino acid metabolism between the HH and LH muscles,with the HH muscle having higher levels of amino acids than the LH muscle,especially hydroxypro-line(Hyp).Furthermore,through supplementation of Hyp in BBTB myoblasts,the results indicated that 0.8 mmol/L Hyp increased the proliferation,differentiation,migration,and collagen synthesis of myoblasts.Finally,BBTB was treated with Hyp intraperitoneally for 15 days.The results revealed that 0.1 g/kg Hyp significantly increased muscle hardness,myofiber density,myofibrillar protein synthesis,and HIF-1 protein content.The results obtained in this study indicated that Hyp supplementation promoted collagen synthesis and proliferation of myoblast and muscle fibers in the BBTB,which may be induced by activation of the transcription factor HIF1 and contributes to the impacts of Hyp on improvements in muscle hardness in the BBTB.
基金supported by the National Natural Science Foundation of China (Grant No.51705082)Fujian Provincial Minjiang Scholar Program (Grant No.0020-510759)+1 种基金Qishan Sholar program in Fuzhou University (Grant No.0020-650289)Fuzhou University Testing Fund of precious apparatus (Grant No.2023T018).
文摘The reduced elastic modulus Er and indentation hardness HIT of various brittle solids including ceramics,semiconductors,glasses,single crystals,and laser material were evaluated using nanoindentation.Various analysis procedures were compared such as Oliver&Pharr and nominal hardness-based methods,which require area function of the indenter,and other methods based on energy,displacement,contact depth,and contact stiffness,which do not require calibration of the indenter.Elastic recovery of the imprint by the Knoop indenter was also utilized to evaluate elastic moduli of brittle solids.Expressions relating HIT/Er and dimensionless nanoindentation variables(e.g.,the ratio of elastic work over total work and the ratio of permanent displacement over maximum displacement)are found to be nonlinear rather than linear for brittle solids.The plastic hardness Hp of brittle solids(except traditional glasses)extracted based on Er is found to be proportional to E_(r)√H_(IT).
基金supported by the National Key Research and Development Program of China(Grant Nos.2024YFA1408400,2023YFA1406100,2023YFA1607400,2022YFA1403800,and 2022YFA1403203)the National Natural Science Foundation of China(Grant Nos.12474055,12404067,12025408,52025026,and U23A6003)+3 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33000000)the Chinese Academy of Sciences President’s International Fellowship Initiative(Grant No.2024PG0003)the Outstanding Member of Youth Promotion Association of Chinese Academy of Sciences(Grant No.Y2022004)supported by the CAC station of Synergetic Extreme Condition User Facility(SECUF,https://cstr.cn/31123.02.SECUF)。
文摘Compared to traditional superhard materials with high electron density and short,strong covalent bonds,alloy materials mainly composed of metallic bonding structures typically have great toughness and lower hardness.Breaking through the limits of alloy materials is a preface and long-term topic,which is of great significance and value for improving the comprehensive mechanical properties of alloy materials.Here,we report on the discovery of a cubic alloy semiconducting material Ti_(2)Co with a large Vickers of hardness K_(v)^(exp)∼6.7GPa and low fracture toughness of K_(IC)^(exp)∼1.51MPa·m^(1/2).Unexpectedly,the K_(v)^(exp)∼6.7GPa is nearly triple of the K_(v)^(cal)∼2.66GPa predicted by density functional theory(DFT)calculations and theK_(IC)^(exp)∼1.51MPa·m^(1/2)is about one or two orders of magnitude smaller than that of ordinary titanium alloy materials(K_(IC)^(exp)∼30-120MPa·m^(1/2)).These specifications place Ti_(2)Co far from the phase space of the known alloy materials.Upon incorporation of oxygen into structural void positions,both values were simultaneously improved for Ti_(4)Co_(2)O to∼9.7GPa and∼2.19MPa·m^(1/2),respectively.Further DFT calculations on the electron localization function of Ti_(4)Co_(2)X(X=B,C,N,O)vs.the interstitial elements indicate that these simultaneous improvements originate from the coexistence of Ti-Co metallic bonds,the emergence of newly oriented Ti-X covalent bonds,and the increase of electron concentration.Moreover,the large difference between K_(v)^(exp)and K_(v)^(cal)of Ti_(2)Co suggests underlying mechanism concerning the absence of the O(16d)or Ti_(2)-O bonds in the O-(Ti_(2))_(6) octahedron.This discovery proposes a new pathway to simultaneously improve the comprehensive mechanical performances and illuminates the path of exploring superconducting materials with excellent mechanical performances.
基金supported by the Ministry of Science,Technological Development and Innovation of the Republic of Serbia,through the Contract no.451-03-65/2024-03/200105
文摘This paper proposes a modification of the Forrestal-Warren perforation model aimed at extending its applicability range to intermediately-thick high-hardness armor steel plates.When impacted by armorpiercing projectiles,these plates tend to fail through adiabatic shear plugging which significantly reduces their ballistic resistance.To address this effect,an approach for determining effective thickness was defined and incorporated into the predictive model.Ballistic impact tests were performed to assess the modification's validity,in which ARMOX 500T steel plates were subjected to perpendicular impacts from 7.62×39 mm steel-cored rounds under various velocities.Frequent target failure by soft plugging was observed,as well as the brittle shatter of the hard steel core.Key properties of the recovered plugs including their mass,length and diameter were measured and reported along with the projectiles'residual velocities.Additionally,independent data from the open literature were included in the analysis for further validation.The original Forrestal-Warren model and the novel effective thickness modification were then used to establish the relationship between impact and residual velocities,as well as to determine the ballistic limit velocity.The comparison revealed that the proposed approach significantly improves the model's accuracy,showing a strong correlation with experimental data and reducing deviations to within a few percent.This enhancement highlights the potential of the effective thickness term,which could also be applied to other predictive models to extend their applicability range.Further exploration into other armor steels and impact conditions is recommended to assess the method's versatility.
基金funding from the Australian Research Council(ARC Discovery Project,Nos.DP200101408 and DP230100183).
文摘1.Introduction The synthesis of bulk nanostructured multiphase(NM)mate-rials with extreme properties such as high hardness and strength is one of the most interesting research topics in materials science and engineering[1].At present,NM alloys can be produced by several synthesis methods,including sintering of nanocomposites[2,3],physical or chemical vapour deposition(PVD or CVD)[4],crystallization of metallic glasses[5],and severe plastic deforma-tion(SPD)[6-8].However,industry applications of bulk NM alloys produced by these methods are significantly restricted by their ge-ometrical and size limitations.Thus,the fabrication of large-scale NM alloys remains challenging.
基金Project (51074189) supported by the National Natural Science Foundation of ChinaProject (20100162110001) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2011BAE09B02) supported by the National Science & Technology Special Foundation of China
文摘Effects of Cr3C2,VC and La2O3 additions on the WC grain morphology,hardness and toughness of WC-10Co alloys were investigated.To intensify the grain growth driving force,nano W and nano C,instead of the conventionally used WC,were used as the starting materials.To obtain a three-dimensional WC grain morphology,the natural sinter skins of the alloys were observed directly by scanning electron microscopy.It is shown that the additions have a strong ability in regulating the WC grain morphological and grain size distribution characteristics and the combinations of hardness and toughness.Due to the formation of regular and homogeneous triangular platelet WC grains,WC-10Co-0.6Cr3C2-0.06La2O3 alloy shows an excellent combination of hardness and toughness.The morphological regulation mechanism,the relationship between the WC grain morphology and the properties were discussed.
基金Project(61901110301)supported by the Aircraft Science Foundation,China
文摘The microstructure and hardness of the stir zone (SZ) with different welding heat inputs were investigated for friction stir-welded 2024-T3 aluminum by transmission electron microscopy, differential scanning calorimeter and Vickers micro-hardness test. The results show that welding heat input has a significant effect on the hardness of the SZ. Under high welding heat input condition, a higher welding speed is beneficial for improving the hardness of the SZ. However, when the welding heat input is low, the hardness of the SZ elevates with increasing the rotation speed. The hardness of the SZ decreases after post-welded heat treatment due to overaging. The joints welded at 500 r/min and 100 mm/min show a high resistance to overaging. The reduction of hardness in the SZ is only 3.8%, while in other joints, the reduction is more than 10%. The morphology of strengthening precipitates plays important roles for the improvement of hardness.
基金Project (2005CB623701) supported by the National Basic Research Program of China
文摘The effect of electrolyte on settling behavior of kaolinite was studied. Effects of hard water on selective flocculation of diasporic bauxite was tested and the measures were taken to eliminate the effects of Ca2+ and Mg2+ in hard water. The results indicated that, not only the concentration of electrolyte ions but also the ionic valence of the electrolyte ions affects the settling behavior of kaolinite; hard water significantly affects its selective flocculation owing to Ca2+ and Mg2+; general dispersants could not eliminate the effects of Ca2+ and Mg2+. Self-made softening agent in our lab could weaken or eliminate the effects of hard water on flocculation processes. The results of molecular dynamics simulation show that softening agent molecules could restrict Ca2+ and prevent them from playing their roles, so as to eliminate the effects. The continuous pilot experiment results of bauxite flocculation were even better than those obtained in laboratory.
基金National Natural Science Foundation of China (10772183, 10532070)
文摘Some factors that affect the experimental results in nanoindentation tests such as the contact depth,contact area,load and loading duration are analyzed in this article. Combining with the results of finite element numerical simulation,we find that the creep property of the tested material is one of the important factors causing the micron indentation hardness descending with the increase of indentation depth. The analysis of experimental results with different indentation depths demonstrates that the hardn...
文摘The hardness values and the wear resistance of Al2O3P/ Zn-Al composite, prepared by means of rheological casting technology,are investigated separately in this work. The results show that the addition of Al2O3P increases the hardness values of the matrix at both room and high temperature and improves the wear resistance of the material.The hardness values and the wear resistance of the composite rise with the increase of the particle volume fraction or the decrease of the particle size.The raising of test temperature results in a rapid descending of its hardness values.However, the addition of Al2O3P improves the property of high temperature resistance of Zn-Al alloys significantly.Moreover,the effect of quenching, tempering or cycling heat treatment on the hardness values of the composite is also studied.
文摘H-gate and closed-gate PD SOI nMOSFETs are fabricated on SIMOX substrate,and the influence of floating body effect on the radiation hardness is studied.All the subthreshold characteristics of the devices do not change much after radiation of the total dose of 106rad(Si).The back gate threshold voltage shift of closed-gate is about 33% less than that of H-gate device.The reason should be that the body potential of the closed-gate device is raised due to impact ionization,and an electric field is produced across the BOX.The floating body effect can improve the radiation hardness of the back gate transistor.
文摘In this paper, single machine scheduling problems with variable processing time is discussed according to published instances of management engineering. Processing time of a job is the product of a “coefficient' of the job on position i and a “normal' processing time of the job. The criteria considered is to minimize scheduled length of all jobs. A lemma is proposed and proved. In no deadline constrained condition, the problem belongs to polynomial time algorithm. It is proved by using 3 partition that if the problem is deadline constrained, its complexity is strong NP hard. Finally, a conjuncture is proposed that is to be proved.
基金Project(51174235)supported by the National Natural Science Foundation of China
文摘Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect and indentation size effect were explored.The indentation hardness was fitted using the Nix-Gao model by considering the scaling factor.The results show that the scaling factor is barely correlated with the grain/sub-grain size.The interaction between the plastically deformed zone(PDZ) boundary and the grain/sub-grain boundary is believed to be the reason that leads to an increase of the measured hardness at the specific depths.Results also indicate that the area of the PDZ is barely correlated with the grain/sub-grain size,and the indentation hardness starts to stabilize once the PDZ expands to the dimension of an individual grain/sub-grain.
文摘The microstructure of a Cu-Zn alloy treated under different high pressures was investigated by means of metallographic, scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD), and the hardness of the Cu-Zn alloy was also measured. The results show that the ct phase with a smaller grain size, different shapes, and random distribution appears in the Cu-Zn alloy during the solid-state phase transformation generation in the temperature range of 25-750℃ and the pressure range of 0-6 GPa. The amount of residual α phase in the microstructure decreases and then increases with increasing pressure. Under a high pressure of 3 GPa, the least volume fraction of residual a phase was obtained, and under a high pressure of 6 GPa, the changes of the microstructure of the Cu-Zn alloy were not obvious. In addition, high pressure can increase the hardness of the Cu-Zn alloy, but it cannot generate any new phase.
基金support from the National Natural Science Foundation of China (Grants Nos. 50971122, 50431010,50621091, 50890171)Shenyang Science & Technology Project (No. 1071107-1-00)the Ministry of Scienceand Technology of China (2005CB623604)
文摘The microstructures and hardness of pure Al samples subjected to plastic deformation with different tem- peratures and strain rates were investigated. The results showed that the strain-induced grain refinement is significantly benefited by increasing strain rate and reducing deformation temperature. The saturated size of refined subgrains in Al can be as small as about 240 nm in cryogenic dynamic plastic deformation (DPD). Grain boundaries of the DPD Al samples are low-angle boundaries due to suppression of dynamic recovery during deformation. Agreement of the measured hardness with the empirical Hall-Petch relation extrapolated from the coarse-grained Al implies that the low-angle boundaries can contribute to strengthening as effective as the conventional grain boundaries.
基金financially supported by the National Natural Science Foundation of China (No. 51101003)
文摘This article presents the microstructure and hardness variation of an Al 8.5Fe-1.3V 1.7Si (wt%, FVS0812) alloy after selective laser melting (SLM) modification. Three zones were distinguished across the melting pool of the SLM-processed FVS0812 alloy: the laser melted zone (LMZ), the melting pool border, and the heat affected zone (HAZ) in the previously deposited area around the melting pool. Inside the LMZ, either an extremely fine cellular-dendritic structure or a mixture zone of the α-Al matrix and nanoscale Al12(Fe,V)3Si particles appeared. With a decreased laser beam scanning speed, the cellular-dendritic structure zone within the LMZ shrank significantly while the mixture zone expanded. The α-Al and Al12(Fe,V)3Si mixture zone was also observed in the HAZ, but another phase, submicron θ-Al13Fe4 particles with rectangular or hexagonal shapes, formed along the melting pool border. Microhardness tests indicated that the hardness of the SLM-processed FVS0812 samples far exceeded that of the as-cast FVS0812 alloy.
基金Project (2003K/20790) supported by the State Planning Organization,TurkeyProject (2009/038) supported by the Scientific Research Projects at Kocaeli University,Turkey
文摘The influence of Cu content on the microstructure and hardness of near-eutectic Al-Si-xCu(x = 2%,3%,4% and 5%) was investigated.After melting Al-based alloys with different Cu contents,alloys were cast in green sand molds at 690 °C and solidified.The solution treatment was performed at 500 °C for 7 h and then the specimens were cooled by water quenching.The samples were respectively aged at 190 °C for 5,10 and 15 h to observe the effect of aging time on the hardness of matrix.Also differential thermal analysis was used to obtain the transition temperature of the equilibrium phases at cooling rate of 30 K/min and to determine the effect of Cu content on the formation of quaternary eutectic phases and the melting point of-(Al) + Si.The results show that as Cu content in the alloy increases,the hardness of matrix increases due to precipitation hardening,the melting point of -(Al) + Si decreases and the amount of these eutectic phases increases,quaternary eutectic phase with melting point of 507 -C forms when Cu content is more than 2%.
基金Projects(51535012,U1604255)supported by the National Natural Science Foundation of ChinaProject(2016JC2001)supported by the Key Research and Development Program of Hunan Province,China
文摘Research has been conducted about the hardness prediction for the carburizing and quenching process based on an optimized hardness simulation model,in accordance with the calculation rule of mixed phases.The coupling field model incorporates carburizing field analysis,temperature field analysis,phase transformation kinetics analysis and a modified hardness calculation model.In determination of the calculation model for hardness,calculation equations are given to be applied to low carbon content(x(C)<0.5%) for the child phases and the martensite hardness is calculated for high carbon content(x(C)>0.5%) in alloy.Then,the complete carburizing-quenching hardness calculation model is built,and the hardness simulation data are corrected considering the influence of residual austenite(RA) on hardness.Hardness simulations of the carburizing and quenching process of 17CrNiMo6 samples have been performed using DEFORM-HT_V10.2 and MATLAB R2013 a.Finally,a series of comparisons of simulation results and measured values show a good agreement between them,which validates the accuracy of the proposed mathematical model.