期刊文献+
共找到279篇文章
< 1 2 14 >
每页显示 20 50 100
A survey of backdoor attacks and defenses:From deep neural networks to large language models
1
作者 Ling-Xin Jin Wei Jiang +5 位作者 Xiang-Yu Wen Mei-Yu Lin Jin-Yu Zhan Xing-Zhi Zhou Maregu Assefa Habtie Naoufel Werghi 《Journal of Electronic Science and Technology》 2025年第3期13-35,共23页
Deep neural networks(DNNs)have found extensive applications in safety-critical artificial intelligence systems,such as autonomous driving and facial recognition systems.However,recent research has revealed their susce... Deep neural networks(DNNs)have found extensive applications in safety-critical artificial intelligence systems,such as autonomous driving and facial recognition systems.However,recent research has revealed their susceptibility to backdoors maliciously injected by adversaries.This vulnerability arises due to the intricate architecture and opacity of DNNs,resulting in numerous redundant neurons embedded within the models.Adversaries exploit these vulnerabilities to conceal malicious backdoor information within DNNs,thereby causing erroneous outputs and posing substantial threats to the efficacy of DNN-based applications.This article presents a comprehensive survey of backdoor attacks against DNNs and the countermeasure methods employed to mitigate them.Initially,we trace the evolution of the concept from traditional backdoor attacks to backdoor attacks against DNNs,highlighting the feasibility and practicality of generating backdoor attacks against DNNs.Subsequently,we provide an overview of notable works encompassing various attack and defense strategies,facilitating a comparative analysis of their approaches.Through these discussions,we offer constructive insights aimed at refining these techniques.Finally,we extend our research perspective to the domain of large language models(LLMs)and synthesize the characteristics and developmental trends of backdoor attacks and defense methods targeting LLMs.Through a systematic review of existing studies on backdoor vulnerabilities in LLMs,we identify critical open challenges in this field and propose actionable directions for future research. 展开更多
关键词 backdoor Attacks backdoor defenses Deep neural networks Large language model
在线阅读 下载PDF
Proactive Disentangled Modeling of Trigger-Object Pairings for Backdoor Defense
2
作者 Kyle Stein Andrew AMahyari +1 位作者 Guillermo Francia III Eman El-Sheikh 《Computers, Materials & Continua》 2025年第10期1001-1018,共18页
Deep neural networks(DNNs)and generative AI(GenAI)are increasingly vulnerable to backdoor attacks,where adversaries embed triggers into inputs to cause models to misclassify or misinterpret target labels.Beyond tradit... Deep neural networks(DNNs)and generative AI(GenAI)are increasingly vulnerable to backdoor attacks,where adversaries embed triggers into inputs to cause models to misclassify or misinterpret target labels.Beyond traditional single-trigger scenarios,attackers may inject multiple triggers across various object classes,forming unseen backdoor-object configurations that evade standard detection pipelines.In this paper,we introduce DBOM(Disentangled Backdoor-Object Modeling),a proactive framework that leverages structured disentanglement to identify and neutralize both seen and unseen backdoor threats at the dataset level.Specifically,DBOM factorizes input image representations by modeling triggers and objects as independent primitives in the embedding space through the use of Vision-Language Models(VLMs).By leveraging the frozen,pre-trained encoders of VLMs,our approach decomposes the latent representations into distinct components through a learnable visual prompt repository and prompt prefix tuning,ensuring that the relationships between triggers and objects are explicitly captured.To separate trigger and object representations in the visual prompt repository,we introduce the trigger–object separation and diversity losses that aids in disentangling trigger and object visual features.Next,by aligning image features with feature decomposition and fusion,as well as learned contextual prompt tokens in a shared multimodal space,DBOM enables zero-shot generalization to novel trigger-object pairings that were unseen during training,thereby offering deeper insights into adversarial attack patterns.Experimental results on CIFAR-10 and GTSRB demonstrate that DBOM robustly detects poisoned images prior to downstream training,significantly enhancing the security of DNN training pipelines. 展开更多
关键词 backdoor attacks generative AI DISENTANGLEMENT
在线阅读 下载PDF
Defending against Backdoor Attacks in Federated Learning by Using Differential Privacy and OOD Data Attributes
3
作者 Qingyu Tan Yan Li Byeong-Seok Shin 《Computer Modeling in Engineering & Sciences》 2025年第5期2417-2428,共12页
Federated Learning(FL),a practical solution that leverages distributed data across devices without the need for centralized data storage,which enables multiple participants to jointly train models while preserving dat... Federated Learning(FL),a practical solution that leverages distributed data across devices without the need for centralized data storage,which enables multiple participants to jointly train models while preserving data privacy and avoiding direct data sharing.Despite its privacy-preserving advantages,FL remains vulnerable to backdoor attacks,where malicious participants introduce backdoors into local models that are then propagated to the global model through the aggregation process.While existing differential privacy defenses have demonstrated effectiveness against backdoor attacks in FL,they often incur a significant degradation in the performance of the aggregated models on benign tasks.To address this limitation,we propose a novel backdoor defense mechanism based on differential privacy.Our approach first utilizes the inherent out-of-distribution characteristics of backdoor samples to identify and exclude malicious model updates that significantly deviate from benign models.By filtering out models that are clearly backdoor-infected before applying differential privacy,our method reduces the required noise level for differential privacy,thereby enhancing model robustness while preserving performance.Experimental evaluations on the CIFAR10 and FEMNIST datasets demonstrate that our method effectively limits the backdoor accuracy to below 15%across various backdoor scenarios while maintaining high main task accuracy. 展开更多
关键词 Federated learning backdoor attacks differential privacy out-of-distribution data
在线阅读 下载PDF
Poison-Only and Targeted Backdoor Attack Against Visual Object Tracking
4
作者 GU Wei SHAO Shuo +2 位作者 ZHOU Lingtao QIN Zhan REN Kui 《ZTE Communications》 2025年第3期3-14,共12页
Visual object tracking(VOT),aiming to track a target object in a continuous video,is a fundamental and critical task in computer vision.However,the reliance on third-party resources(e.g.,dataset)for training poses con... Visual object tracking(VOT),aiming to track a target object in a continuous video,is a fundamental and critical task in computer vision.However,the reliance on third-party resources(e.g.,dataset)for training poses concealed threats to the security of VOT models.In this paper,we reveal that VOT models are vulnerable to a poison-only and targeted backdoor attack,where the adversary can achieve arbitrary tracking predictions by manipulating only part of the training data.Specifically,we first define and formulate three different variants of the targeted attacks:size-manipulation,trajectory-manipulation,and hybrid attacks.To implement these,we introduce Random Video Poisoning(RVP),a novel poison-only strategy that exploits temporal correlations within video data by poisoning entire video sequences.Extensive experiments demonstrate that RVP effectively injects controllable backdoors,enabling precise manipulation of tracking behavior upon trigger activation,while maintaining high performance on benign data,thus ensuring stealth.Our findings not only expose significant vulnerabilities but also highlight that the underlying principles could be adapted for beneficial uses,such as dataset watermarking for copyright protection. 展开更多
关键词 visual object tracking backdoor attack computer vision data security AI safety
在线阅读 下载PDF
基于自监督学习与数据集分割的后门防御方法
5
作者 何子晟 凌捷 《计算机应用研究》 北大核心 2026年第1期256-262,共7页
针对深度神经网络(DNNs)在图像分类任务中易受后门攻击、现有防御方法难以兼顾模型准确率与鲁棒性的问题,提出一种名为SAS(self-supervised adaptive splitting)的基于自监督预训练与动态数据集分割的半监督后门防御方法。该方法首先引... 针对深度神经网络(DNNs)在图像分类任务中易受后门攻击、现有防御方法难以兼顾模型准确率与鲁棒性的问题,提出一种名为SAS(self-supervised adaptive splitting)的基于自监督预训练与动态数据集分割的半监督后门防御方法。该方法首先引入一致性正则化的对比学习框架进行自监督训练,解耦图像特征与后门模式;随后的微调阶段基于动态数据筛选与半监督学习策略,在训练中筛选并分别利用高可信度和低可信度数据,抑制后门植入。在CIFAR-10和GTSRB两种数据集上,针对BadNets、Blend、WaNet和Refool四种攻击的实验表明,该方法相较ASD方法,在两种数据集的干净数据上的分类准确率分别平均提升了1.65和0.65个百分点;污染数据的后门攻击成功率均降低到1.4%以下。研究证实,该方法通过解耦特征与动态数据集分割的协同作用,能有效提升模型的后门防御能力,同时保持在干净数据上的高分类性能,为构建安全可靠的深度学习模型提供了有效的途径。 展开更多
关键词 深度学习 后门防御 半监督学习 图像分类 自监督学习
在线阅读 下载PDF
Software Backdoor Analysis Based on Sensitive Flow Tracking and Concolic Execution 被引量:3
6
作者 XU Xin WANG Jiajie +2 位作者 CHENG Shaoyin ZHANG Tao JIANG Fan 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2016年第5期421-427,共7页
In order to effectively detect and analyze the backdoors this paper introduces a method named Backdoor Analysis based on Sensitive flow tracking and Concolic Execution(BASEC).BASEC uses sensitive flow tracking to ef... In order to effectively detect and analyze the backdoors this paper introduces a method named Backdoor Analysis based on Sensitive flow tracking and Concolic Execution(BASEC).BASEC uses sensitive flow tracking to effectively discover backdoor behaviors, such as stealing secret information and injecting evil data into system, with less false negatives. With concolic execution on predetermined path, the backdoor trigger condition can be extracted and analyzed to achieve high accuracy. BASEC has been implemented and experimented on several software backdoor samples widespread on the Internet, and over 90% of them can be detected. Compared with behavior-based and system-call-based detection methods, BASEC relies less on the historical sample collections, and is more effective in detecting software backdoors, especially those injected into software by modifying and recompiling source codes. 展开更多
关键词 software backdoor detection data flow tracking concolic execution malware detection
原文传递
An Improved Optimized Model for Invisible Backdoor Attack Creation Using Steganography 被引量:2
7
作者 Daniyal M.Alghazzawi Osama Bassam J.Rabie +1 位作者 Surbhi Bhatia Syed Hamid Hasan 《Computers, Materials & Continua》 SCIE EI 2022年第7期1173-1193,共21页
The Deep Neural Networks(DNN)training process is widely affected by backdoor attacks.The backdoor attack is excellent at concealing its identity in the DNN by performing well on regular samples and displaying maliciou... The Deep Neural Networks(DNN)training process is widely affected by backdoor attacks.The backdoor attack is excellent at concealing its identity in the DNN by performing well on regular samples and displaying malicious behavior with data poisoning triggers.The state-of-art backdoor attacks mainly follow a certain assumption that the trigger is sample-agnostic and different poisoned samples use the same trigger.To overcome this problem,in this work we are creating a backdoor attack to check their strength to withstand complex defense strategies,and in order to achieve this objective,we are developing an improved Convolutional Neural Network(ICNN)model optimized using a Gradient-based Optimization(GBO)(ICNN-GBO)algorithm.In the ICNN-GBO model,we are injecting the triggers via a steganography and regularization technique.We are generating triggers using a single-pixel,irregular shape,and different sizes.The performance of the proposed methodology is evaluated using different performance metrics such as Attack success rate,stealthiness,pollution index,anomaly index,entropy index,and functionality.When the CNN-GBO model is trained with the poisoned dataset,it will map the malicious code to the target label.The proposed scheme’s effectiveness is verified by the experiments conducted on both the benchmark datasets namely CIDAR-10 andMSCELEB 1M dataset.The results demonstrate that the proposed methodology offers significant defense against the conventional backdoor attack detection frameworks such as STRIP and Neutral cleanse. 展开更多
关键词 Convolutional neural network gradient-based optimization STEGANOGRAPHY backdoor attack and regularization attack
在线阅读 下载PDF
XMAM:X-raying models with a matrix to reveal backdoor attacks for federated learning 被引量:1
8
作者 Jianyi Zhang Fangjiao Zhang +3 位作者 Qichao Jin Zhiqiang Wang Xiaodong Lin Xiali Hei 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1154-1167,共14页
Federated Learning(FL),a burgeoning technology,has received increasing attention due to its privacy protection capability.However,the base algorithm FedAvg is vulnerable when it suffers from so-called backdoor attacks... Federated Learning(FL),a burgeoning technology,has received increasing attention due to its privacy protection capability.However,the base algorithm FedAvg is vulnerable when it suffers from so-called backdoor attacks.Former researchers proposed several robust aggregation methods.Unfortunately,due to the hidden characteristic of backdoor attacks,many of these aggregation methods are unable to defend against backdoor attacks.What's more,the attackers recently have proposed some hiding methods that further improve backdoor attacks'stealthiness,making all the existing robust aggregation methods fail.To tackle the threat of backdoor attacks,we propose a new aggregation method,X-raying Models with A Matrix(XMAM),to reveal the malicious local model updates submitted by the backdoor attackers.Since we observe that the output of the Softmax layer exhibits distinguishable patterns between malicious and benign updates,unlike the existing aggregation algorithms,we focus on the Softmax layer's output in which the backdoor attackers are difficult to hide their malicious behavior.Specifically,like medical X-ray examinations,we investigate the collected local model updates by using a matrix as an input to get their Softmax layer's outputs.Then,we preclude updates whose outputs are abnormal by clustering.Without any training dataset in the server,the extensive evaluations show that our XMAM can effectively distinguish malicious local model updates from benign ones.For instance,when other methods fail to defend against the backdoor attacks at no more than 20%malicious clients,our method can tolerate 45%malicious clients in the black-box mode and about 30%in Projected Gradient Descent(PGD)mode.Besides,under adaptive attacks,the results demonstrate that XMAM can still complete the global model training task even when there are 40%malicious clients.Finally,we analyze our method's screening complexity and compare the real screening time with other methods.The results show that XMAM is about 10–10000 times faster than the existing methods. 展开更多
关键词 Federated learning backdoor attacks Aggregation methods
在线阅读 下载PDF
Adaptive Backdoor Attack against Deep Neural Networks 被引量:1
9
作者 Honglu He Zhiying Zhu Xinpeng Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2617-2633,共17页
In recent years,the number of parameters of deep neural networks(DNNs)has been increasing rapidly.The training of DNNs is typically computation-intensive.As a result,many users leverage cloud computing and outsource t... In recent years,the number of parameters of deep neural networks(DNNs)has been increasing rapidly.The training of DNNs is typically computation-intensive.As a result,many users leverage cloud computing and outsource their training procedures.Outsourcing computation results in a potential risk called backdoor attack,in which a welltrained DNN would performabnormally on inputs with a certain trigger.Backdoor attacks can also be classified as attacks that exploit fake images.However,most backdoor attacks design a uniformtrigger for all images,which can be easilydetectedand removed.In this paper,we propose a novel adaptivebackdoor attack.We overcome this defect and design a generator to assign a unique trigger for each image depending on its texture.To achieve this goal,we use a texture complexitymetric to create a specialmask for eachimage,which forces the trigger tobe embedded into the rich texture regions.The trigger is distributed in texture regions,which makes it invisible to humans.Besides the stealthiness of triggers,we limit the range of modification of backdoor models to evade detection.Experiments show that our method is efficient in multiple datasets,and traditional detectors cannot reveal the existence of a backdoor. 展开更多
关键词 backdoor attack AI security DNN
在线阅读 下载PDF
Byzantine Robust Federated Learning Scheme Based on Backdoor Triggers 被引量:1
10
作者 Zheng Yang Ke Gu Yiming Zuo 《Computers, Materials & Continua》 SCIE EI 2024年第5期2813-2831,共19页
Federated learning is widely used to solve the problem of data decentralization and can provide privacy protectionfor data owners. However, since multiple participants are required in federated learning, this allows a... Federated learning is widely used to solve the problem of data decentralization and can provide privacy protectionfor data owners. However, since multiple participants are required in federated learning, this allows attackers tocompromise. Byzantine attacks pose great threats to federated learning. Byzantine attackers upload maliciouslycreated local models to the server to affect the prediction performance and training speed of the global model. Todefend against Byzantine attacks, we propose a Byzantine robust federated learning scheme based on backdoortriggers. In our scheme, backdoor triggers are embedded into benign data samples, and then malicious localmodels can be identified by the server according to its validation dataset. Furthermore, we calculate the adjustmentfactors of local models according to the parameters of their final layers, which are used to defend against datapoisoning-based Byzantine attacks. To further enhance the robustness of our scheme, each localmodel is weightedand aggregated according to the number of times it is identified as malicious. Relevant experimental data showthat our scheme is effective against Byzantine attacks in both independent identically distributed (IID) and nonindependentidentically distributed (non-IID) scenarios. 展开更多
关键词 Federated learning Byzantine attacks backdoor triggers
在线阅读 下载PDF
Backdoor Malware Detection in Industrial IoT Using Machine Learning
11
作者 Maryam Mahsal Khan Attaullah Buriro +1 位作者 Tahir Ahmad Subhan Ullah 《Computers, Materials & Continua》 SCIE EI 2024年第12期4691-4705,共15页
With the ever-increasing continuous adoption of Industrial Internet of Things(IoT)technologies,security concerns have grown exponentially,especially regarding securing critical infrastructures.This is primarily due to... With the ever-increasing continuous adoption of Industrial Internet of Things(IoT)technologies,security concerns have grown exponentially,especially regarding securing critical infrastructures.This is primarily due to the potential for backdoors to provide unauthorized access,disrupt operations,and compromise sensitive data.Backdoors pose a significant threat to the integrity and security of Industrial IoT setups by exploiting vulnerabilities and bypassing standard authentication processes.Hence its detection becomes of paramount importance.This paper not only investigates the capabilities of Machine Learning(ML)models in identifying backdoor malware but also evaluates the impact of balancing the dataset via resampling techniques,including Synthetic Minority Oversampling Technique(SMOTE),Synthetic Data Vault(SDV),and Conditional Tabular Generative Adversarial Network(CTGAN),and feature reduction such as Pearson correlation coefficient,on the performance of the ML models.Experimental evaluation on the CCCS-CIC-AndMal-2020 dataset demonstrates that the Random Forest(RF)classifier generated an optimal model with 99.98%accuracy when using a balanced dataset created by SMOTE.Additionally,the training and testing time was reduced by approximately 50%when switching from the full feature set to a reduced feature set,without significant performance loss. 展开更多
关键词 Industrial IoT backdoor malware machine learning CCCS-CIC-AndMal-2020 security detection critical infrastructure
在线阅读 下载PDF
A backdoor attack against quantum neural networks with limited information
12
作者 黄晨猗 张仕斌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期219-228,共10页
Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs... Backdoor attacks are emerging security threats to deep neural networks.In these attacks,adversaries manipulate the network by constructing training samples embedded with backdoor triggers.The backdoored model performs as expected on clean test samples but consistently misclassifies samples containing the backdoor trigger as a specific target label.While quantum neural networks(QNNs)have shown promise in surpassing their classical counterparts in certain machine learning tasks,they are also susceptible to backdoor attacks.However,current attacks on QNNs are constrained by the adversary's understanding of the model structure and specific encoding methods.Given the diversity of encoding methods and model structures in QNNs,the effectiveness of such backdoor attacks remains uncertain.In this paper,we propose an algorithm that leverages dataset-based optimization to initiate backdoor attacks.A malicious adversary can embed backdoor triggers into a QNN model by poisoning only a small portion of the data.The victim QNN maintains high accuracy on clean test samples without the trigger but outputs the target label set by the adversary when predicting samples with the trigger.Furthermore,our proposed attack cannot be easily resisted by existing backdoor detection methods. 展开更多
关键词 backdoor attack quantum artificial intelligence security quantum neural network variational quantum circuit
原文传递
A Gaussian Noise-Based Algorithm for Enhancing Backdoor Attacks
13
作者 Hong Huang Yunfei Wang +1 位作者 Guotao Yuan Xin Li 《Computers, Materials & Continua》 SCIE EI 2024年第7期361-387,共27页
Deep Neural Networks(DNNs)are integral to various aspects of modern life,enhancing work efficiency.Nonethe-less,their susceptibility to diverse attack methods,including backdoor attacks,raises security concerns.We aim... Deep Neural Networks(DNNs)are integral to various aspects of modern life,enhancing work efficiency.Nonethe-less,their susceptibility to diverse attack methods,including backdoor attacks,raises security concerns.We aim to investigate backdoor attack methods for image categorization tasks,to promote the development of DNN towards higher security.Research on backdoor attacks currently faces significant challenges due to the distinct and abnormal data patterns of malicious samples,and the meticulous data screening by developers,hindering practical attack implementation.To overcome these challenges,this study proposes a Gaussian Noise-Targeted Universal Adversarial Perturbation(GN-TUAP)algorithm.This approach restricts the direction of perturbations and normalizes abnormal pixel values,ensuring that perturbations progress as much as possible in a direction perpendicular to the decision hyperplane in linear problems.This limits anomalies within the perturbations improves their visual stealthiness,and makes them more challenging for defense methods to detect.To verify the effectiveness,stealthiness,and robustness of GN-TUAP,we proposed a comprehensive threat model.Based on this model,extensive experiments were conducted using the CIFAR-10,CIFAR-100,GTSRB,and MNIST datasets,comparing our method with existing state-of-the-art attack methods.We also tested our perturbation triggers using various defense methods and further experimented on the robustness of the triggers against noise filtering techniques.The experimental outcomes demonstrate that backdoor attacks leveraging perturbations generated via our algorithm exhibit cross-model attack effectiveness and superior stealthiness.Furthermore,they possess robust anti-detection capabilities and maintain commendable performance when subjected to noise-filtering methods. 展开更多
关键词 Image classification model backdoor attack gaussian distribution Artificial Intelligence(AI)security
在线阅读 下载PDF
基于图神经网络的去偏因果推荐 被引量:2
14
作者 荀亚玲 李欣意 +2 位作者 韩硕 李砚峰 王兴 《计算机应用研究》 北大核心 2025年第5期1331-1337,共7页
推荐系统通常依赖用户的历史交互数据进行模型训练,虽然能够较好地反映用户过去的行为偏好,但在捕捉用户的潜在兴趣方面存在局限性,同时也面临数据稀疏性问题;此外,推荐系统往往过度关注流行度较高的项目,而未能充分考虑用户的真实偏好... 推荐系统通常依赖用户的历史交互数据进行模型训练,虽然能够较好地反映用户过去的行为偏好,但在捕捉用户的潜在兴趣方面存在局限性,同时也面临数据稀疏性问题;此外,推荐系统往往过度关注流行度较高的项目,而未能充分考虑用户的真实偏好,进一步限制了推荐的多样性和个性化水平。针对上述问题,提出一种去偏因果推荐方法GDCR(graph neural network-based debiased causal recommendation)。首先,GDCR引入图神经网络GNN来聚合用户-项目交互图和社交网络图中的信息,过程中不仅考虑了用户对不同项目的评分差异,还根据用户之间关系的紧密程度进行深入分析,从而获取更丰富、全面的用户表示和项目表示。然后构建因果图描述数据的生成过程,并分析导致过度推荐热门项目除了受流行偏差影响外,还受到一致性偏差的影响,由此,应用后门调整策略来消除上述偏差。在MovieLens和Douban-Movie两个公开数据集上,与八种基线方法进行了对比实验,结果表明,GDCR方法相较于其他先进的推荐方法展现出显著的性能优势,进一步验证了该方法在缓解数据稀疏性问题和提升推荐准确性方面的有效性。 展开更多
关键词 推荐系统 因果推断 图神经网络 后门调整
在线阅读 下载PDF
面向模型量化的安全性研究综述 被引量:1
15
作者 陈晋音 曹志骐 +1 位作者 郑海斌 郑雅羽 《小型微型计算机系统》 北大核心 2025年第6期1473-1490,共18页
随着边缘智能设备的飞速发展,为了在资源受限的边缘端设备上部署参数和存储需求巨大的深度模型,模型压缩技术显得至关重要.现有的模型压缩主要包含剪枝、量化、知识蒸馏和低秩分解4类,量化凭借推理快、功耗低、存储少的优势,使它成为了... 随着边缘智能设备的飞速发展,为了在资源受限的边缘端设备上部署参数和存储需求巨大的深度模型,模型压缩技术显得至关重要.现有的模型压缩主要包含剪枝、量化、知识蒸馏和低秩分解4类,量化凭借推理快、功耗低、存储少的优势,使它成为了边缘端部署的常用技术.然而,已有的量化方法主要关注的是模型量化后的模型精度损失和内存占用情况,而忽略模型量化可能面临的安全性威胁.因此,针对模型量化的安全性研究显得尤为重要.本文首次针对模型量化的安全性问题展开分析,首先定义了模型量化的攻防理论,其次按照模型量化前和模型量化过程中两个阶段对量化攻击方法和量化防御方法进行分析归纳,整理了针对不同攻击任务进行的通用基准数据集与主要评价指标,最后探讨了模型量化的安全性研究及其应用,以及未来潜在研究方向,进一步推动模型量化的安全性研究发展和应用. 展开更多
关键词 模型量化 模型安全 对抗攻击 后门攻击 隐私窃取 公平性 模型防御
在线阅读 下载PDF
IIS Backdoor刺穿防火墙的后门
16
作者 金海龙 《家庭电脑世界》 2004年第10S期55-55,共1页
现在的防火墙真是越来越厉害,一般的后门根本无法刺穿防火墙的拦截。虽然防火墙在一点点的进步但是后门也没落后。俗话说的好.道高一尺魔高一丈,安全是靠整体的.只要有一点点的疏忽也会被攻破.在本文中我就给大家介绍一款刺穿防火... 现在的防火墙真是越来越厉害,一般的后门根本无法刺穿防火墙的拦截。虽然防火墙在一点点的进步但是后门也没落后。俗话说的好.道高一尺魔高一丈,安全是靠整体的.只要有一点点的疏忽也会被攻破.在本文中我就给大家介绍一款刺穿防火墙的后门——iis backdoor。 展开更多
关键词 防火墙 IIS backdoor 网络安全 入侵检测系统 计算机网络
在线阅读 下载PDF
面向激光雷达的自动驾驶相关任务安全性综述
17
作者 陈晋音 赵卓 +2 位作者 徐曦恩 项圣 郑海斌 《小型微型计算机系统》 北大核心 2025年第7期1590-1605,共16页
自动驾驶技术的迅猛发展,推动了激光雷达的应用.激光雷达以其卓越的环境感知、导航和避障能力,在自动驾驶领域扮演着关键角色.随着人工智能和深度学习技术的不断进步,三维数据处理技术取得了显著成果,并在多个场景中得到应用.然而,随着... 自动驾驶技术的迅猛发展,推动了激光雷达的应用.激光雷达以其卓越的环境感知、导航和避障能力,在自动驾驶领域扮演着关键角色.随着人工智能和深度学习技术的不断进步,三维数据处理技术取得了显著成果,并在多个场景中得到应用.然而,随着技术的应用深入,其安全性问题日益凸显,例如行驶中的车辆可能会错误识别出不存在的物体.而现有研究多聚焦于单一任务,缺乏对安全性问题的综合性论述,尤其是对后门攻击的研究相对匮乏.因此,本文首次全面评估和分析了基于激光雷达在自动驾驶中的安全性问题,特别是对抗攻击和后门攻击的挑战.文章首先阐述了激光雷达的工作原理及其在自动驾驶任务中的应用,包括目标分类、目标检测和语义分割3大类.具体而言,本综述深入探讨了55篇相关论文,系统地介绍了不同任务下的攻击方法和防御策略.进一步,本文提供了11个公共数据集、7个评估指标、7个常用模型和4个仿真平台,为研究者提供了宝贵的资源和工具.最后,文章结合当前面临的挑战与未来机遇,对激光雷达在自动驾驶安全应用的研究方向进行了前瞻性展望,旨在为激光雷达技术的安全可靠应用提供指导和参考. 展开更多
关键词 激光雷达 目标分类 语义分割 目标检测 对抗攻击 后门攻击
在线阅读 下载PDF
基于同构联邦学习的Webshell检测模型
18
作者 郭晓军 孙雨生 《计算机工程与设计》 北大核心 2025年第12期3515-3521,共7页
Webshell恶意脚本常被黑客用来获取Web服务器的多种操作权限。针对组织及其各分支跨区域协作检测Webshell的问题,提出了一种基于同构联邦学习算法的分布式Webshell检测模型(Webshell detection model based on an isomorphic federated ... Webshell恶意脚本常被黑客用来获取Web服务器的多种操作权限。针对组织及其各分支跨区域协作检测Webshell的问题,提出了一种基于同构联邦学习算法的分布式Webshell检测模型(Webshell detection model based on an isomorphic federated learning,WDIFD)。该模型通过TF-IDF进行特征提取,在本地MLP模型中训练。经过数次迭代后,将参数传递到中心服务器,服务器计算后将更新的参数返回给本地模型。重复多次迭代,生成最优的Webshell协作检测模型。实验结果表明,在PHP、JSP、ASP和ASPX多种类型的Webshell公开数据集上,该模型检测准确率可分别达到99.11%、99.55%、99.66%和99.33%,对多种类型的Webshell呈现出较好的识别能力。 展开更多
关键词 网页安全 网站后门检测 联邦学习 深度学习 多层感知器 特征提取 入侵检测
在线阅读 下载PDF
多模态大模型安全研究进展 被引量:5
19
作者 郭园方 余梓彤 +8 位作者 刘艾杉 周文柏 乔通 李斌 张卫明 康显桂 周琳娜 俞能海 黄继武 《中国图象图形学报》 北大核心 2025年第6期2051-2081,共31页
多模态大模型的安全性研究已成为当下人工智能领域的焦点。由于大模型以深度神经网络为核心构建,因此与深度神经网络类似,存在多种安全风险。此外,由于其特有的复杂性,以及广泛的应用场景,也使得大模型面临一些独特的安全风险。本文系... 多模态大模型的安全性研究已成为当下人工智能领域的焦点。由于大模型以深度神经网络为核心构建,因此与深度神经网络类似,存在多种安全风险。此外,由于其特有的复杂性,以及广泛的应用场景,也使得大模型面临一些独特的安全风险。本文系统地总结多模态大模型的安全风险,包括对抗攻击、越狱攻击、后门攻击、版权窃取、幻觉现象、泛化问题以及偏见问题等。具体来说,在对抗攻击中,攻击者通过构造微小但具有欺骗性的对抗样本,使大模型在面对带噪输入时产生严重的误判;越狱攻击利用大模型的复杂结构,绕过或破坏原有的安全约束和防御措施,使模型执行未授权的操作,甚至泄露敏感数据;后门攻击则通过在大模型的训练阶段植入隐秘的触发器,使模型在特定条件下做出攻击者预期的反应;未经授权的窃取者可能未经模型拥有者的同意随意分发或进行商业使用,将导致模型版权拥有者遭受损失;幻觉现象,即模型输出与输入不一致的问题;泛化问题即大模型当前应对部分新数据分布或风格的能力仍显不足;大模型在性别、种族、肤色和年龄等敏感问题上的偏向性可能引发伦理等问题。随后,针对这些安全风险分别介绍相应的解决方案。本文旨在为理解和应对多模态大模型的独特安全挑战提供一个独特的视角,促进多模态大模型安全技术的发展,引导未来相关安全技术的发展方向。 展开更多
关键词 多模态大模型 大模型安全 对抗样本(AE) 越狱攻击 后门攻击 版权窃取 模型幻觉 模型偏见
原文传递
面向数据投毒后门攻击的随机性增强双层优化防御方法 被引量:2
20
作者 闫宇坤 唐朋 +2 位作者 陈睿 都若尘 韩启龙 《信息网络安全》 北大核心 2025年第7期1074-1091,共18页
数据投毒后门攻击揭示了深度神经网络在安全性方面的脆弱性,严重威胁其在实际应用中的可靠性。尽管已有多种防御策略被提出,但在实际部署中仍面临两大挑战:1)过度依赖于有关攻击者行为或训练数据的先验知识,导致泛化性受限;2)难以在模... 数据投毒后门攻击揭示了深度神经网络在安全性方面的脆弱性,严重威胁其在实际应用中的可靠性。尽管已有多种防御策略被提出,但在实际部署中仍面临两大挑战:1)过度依赖于有关攻击者行为或训练数据的先验知识,导致泛化性受限;2)难以在模型性能与防御能力之间取得有效平衡。因此,文章提出一种面向数据投毒后门攻击的随机性增强双层优化防御框架(RADAR)。该框架以数据识别为核心,将鲁棒性增强训练与样本筛选机制有机融合,无需任何先验信息,即可在模型训练过程中动态识别数据集内干净样本与可疑中毒样本,并在筛选所得可信数据上进行模型快速调整,构建具备稳健防御能力的深度神经网络。具体而言,RADAR结合噪声增强的自监督预训练与满足差分隐私约束的参数自适应微调机制,即使在中毒样本主导目标类别的极端情况下,也能识别其为全局异常并抑制拟和,保障干净样本的准确筛选。此外,RADAR设计了面向干净特征的随机平滑拟和解耦策略,在干净样本受限条件下,有效去除后门模型对干净特征的拟和能力,从而降低可疑中毒样本识别的假阳率。通过在多种类型数据投毒后门攻击下开展防御实验,结果表明RADAR不仅在干净样本上分类性能优良,还展现出优异的防御能力,将各类攻击成功率抑制在7%以下,体现出良好的安全性与实用性。 展开更多
关键词 后门防御 数据投毒 差分隐私
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部