In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular...In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular dynamics simulation.In liquid Mg-rich Mg-Y alloys,the strong Mg-Y interaction is determined,which promotes the formation of fivefold symmetric local structure.For Mg-Zn alloys,the weak Mg-Zn interaction results in the fivefold symmetry weakening in the liquid structure.Due to the coexistence of Y and Zn,the strong attractive interaction is introduced in liquid Mg-Y-Zn ternary alloy,and contributes to the clustering of Mg,Y,Zn launched from Zn.What is more,the distribution of local structures becomes closer to that in pure Mg compared with that in binary Mg-Y and Mg-Zn alloys.These results should relate to the origins of the Y/Zn segregation zone and close-packed stacking mode in LPSO structure,which provides a new insight into the formation mechanism of LPSO structure at atomic level.展开更多
MK-1 molecule(C_(16)H_(16)O_(2)),the simplest structure of vitamin K(VK)compound family,is an extract from traditional Chinese medicine Cymbopogon distans(Nees ex Steud.)Wats(Chinese name YunXiangCao),which has attrac...MK-1 molecule(C_(16)H_(16)O_(2)),the simplest structure of vitamin K(VK)compound family,is an extract from traditional Chinese medicine Cymbopogon distans(Nees ex Steud.)Wats(Chinese name YunXiangCao),which has attracted a great deal of attention in recent years due to its antiasthmatic,antitussives and expectorant effects.To investigate the molecular structure and chemical reactivity of MK-1 molecule,computational investigations on six conformational minima structures were carried out at the MP2/6-311++G(2d,2p)level of theory.Several local reactivity descriptors including condensed Fukui function,average local ionization energy,and molecular electrostatic potential on each individual atom were determined to predict the intrinsic reactivity of MK-1 molecule.展开更多
Isopimpinellin(C13H10O5),alternative name 5,8-dimethoxypsoralen,is one of the furocoumarin compounds.This traditional Chinese medicine extract has attracted a great deal of attention in recent years due to its pharmac...Isopimpinellin(C13H10O5),alternative name 5,8-dimethoxypsoralen,is one of the furocoumarin compounds.This traditional Chinese medicine extract has attracted a great deal of attention in recent years due to its pharmacological properties,especially its antifungal effect.The main purpose of this study was to study the molecular structure and chemical reactivity of isopimpinellin using the density functional theory method.To understand and interpret the reactivity of isopimpinellin,various chemical reactivity descriptors such as chemical potential(μ),electronegativity(χ),chemical hardness(η)and electrophilicity(ω)and local reactivity index condensed Fukui function(fi(r))have been calculated with five hybrid functionals PBE1PBE,MPW1PW91,B3LYP,X3LYP and B3PW91.These chemical reactivity descriptors indicate that the isopimpinellin molecule has a good antioxidant activity,which could be one of the reasons for its action as an effective antifungal drug.The condensed Fukui functions of isopimpinellin molecule provide a complete scheme of chemical reactivity of one molecule.展开更多
In the present study,we aimed to investigate the chemical constituents and analgesic activity of Aconitum kusnezoffii Reichb. The isolation and purification of components were achieved by a series of chromatography, i...In the present study,we aimed to investigate the chemical constituents and analgesic activity of Aconitum kusnezoffii Reichb. The isolation and purification of components were achieved by a series of chromatography, including silica gel, Sephadex LH-20 and HPLC. By using spectroscopic analysis, their structures were identified. Using PDE-4A as analgesic target, moleculardocking was conducted between isolated compounds by using Schrodinger software. Neoline is a typical non-ester diterpene alkaloid. It was studied by using the mouse torsion body method and hot plate method. A total of 12 diterpene alkaloids were obtainedand identified as Mesaconitine(1), Bewutine (2), Bewudine (3), Songoramine (4), Songorine (5), Neoline (6), Talasamine (7), isotalatizidine (8), Hokbusine A (9), Mesaconine (10), 8-OEt-14-benzoylmesaconine (11), 8-Methoxy-14-benzoyl-beiwutinine (12).Compounds 9 and 12 were isolated from Aconitum kusnezoffii Reichb. for the first time. Twelve diterpenealkaloids could act on the analgesic target. Neoline is a typical non-ester diterpene alkaloid. It had significant analgesic effect. Diterpene alkaloids were the main components of Aconitum kusnezoffiiReichb., and they had good analgesic activity.展开更多
Background:This study was conducted to determine protein molecular structure profiles and quantify the relationship between protein structural features and protein metabolism and bioavailability of blend pel eted prod...Background:This study was conducted to determine protein molecular structure profiles and quantify the relationship between protein structural features and protein metabolism and bioavailability of blend pel eted products(BPP)based on co-products(canola or carinata)from processing with different proportions of pulse pea screenings and lignosulfonate chemical compound.Method:The protein molecular structures were determined using the non-invasive advanced vibrational molecular spectroscopy(ATR-FT/IR)in terms of chemical structure and biofunctional groups of amides(ⅠandⅡ),α-helix andβ-sheet.Results:The results showed that increasing the level of the co-products in BPP significantly increased the spectral intensity of the amide area and amide height.The products exhibited similar protein secondaryα-helix toβ-sheet ratio.The protein molecular structure profiles(amidesⅠandⅡ,α-helix toβ-sheet)were highly associated with protein degradation kinetics and intestinal digestion.In conclusion,the non-invasive vibrational molecular spectroscopy(ATR-FT/IR)could be used to detect inherent structural make-up characteristics in BPP.Conclusion:The molecular structural features related to protein biopolymer were highly associated with protein utilization and metabolism.展开更多
The molecular chain structure and crystalline structure of PB-ET copolyester made by con-densation polymerization are studied by means of <sup>13</sup>C nuclear magnetic resonance spectroscopy(<sup>1...The molecular chain structure and crystalline structure of PB-ET copolyester made by con-densation polymerization are studied by means of <sup>13</sup>C nuclear magnetic resonance spectroscopy(<sup>13</sup>C NMR),dynamic mechanical analysis (DMA),wide angle X-ray scattering (WAXS),depolarized light intensity (DLI) and stress-strain measurement(S-S).It is shown that PB-ETcopolyester is a random copolymer.Because of different ratios of EG(ethylene glycol)to BD(butane diol)in the copolyester,its crystalline forms and mechanical properties vary remarkably.With the increasing amount of BD,its crystallization kinetic parameters n,k and t<sub>1/2</sub><sup>-1</sup> increaserapidly.When EG/BD equals 25/75 (mole ratio),the copolyester has αβ transition as PBTdoes.展开更多
Infrared(IR)vibrational spectroscopy provides rich molecular fingerprint information for label-free detection of chemical bonds and conformational structures,with broad applications in biochemistry,pharmacology,and ma...Infrared(IR)vibrational spectroscopy provides rich molecular fingerprint information for label-free detection of chemical bonds and conformational structures,with broad applications in biochemistry,pharmacology,and materials analysis.1-3 However,its practical utility in complex,especially aqueous,environments remains constrained by two fundamental limitations:the intrinsically weak vibrational absorption cross-sections of typical biomolecules and the poor spatial resolution dictated by mid-infrared(mid-IR)wavelengths,exacerbated by strong water absorption.展开更多
The 14-3-3 protein family is among the most extensively studied, yet still largely mysterious protein families in mammals to date. As they are well recognized for their roles in apoptosis, cell cycle regulation, and p...The 14-3-3 protein family is among the most extensively studied, yet still largely mysterious protein families in mammals to date. As they are well recognized for their roles in apoptosis, cell cycle regulation, and proliferation in healthy cells, aberrant 14-3-3 expression has unsurprisingly emerged as instrumentalin the development of many cancers and in prognosis. Interestingly, while the seven known 14-3-3 isoforms in humans have many similar functions across cell types, evidence of isoform-specific functions and localization has been observed in both healthy and diseased cells The strikingly high similarity among 14-3-3 isoforms has made it difficult to delineate isoform-specific functions and for isoform-specific targeting. Here, we review our knowledge of 14-3-3 interactome(s) generated by high- throughput techniques, bioinformatics, structural genomics and chemical genornics and point out that integrating the information with molecular dynamics (MD) simulations may bring us new opportunity to the design of isoform-specific inhibitors, which can not only be used as powerful research tools for delineating distinct interactomes of individual 14-3-3 isoforms, but also can serve as potential new anti-cancer drugs that selectively target aberrant 14-3-3 isoform.展开更多
Based on the identical group as a pseudo atom instead of a typical atom, a novel modified molecular dis-tance-edge (MDE) vector μ was developed in our laboratory to characterize chemical structure of polychlorinated ...Based on the identical group as a pseudo atom instead of a typical atom, a novel modified molecular dis-tance-edge (MDE) vector μ was developed in our laboratory to characterize chemical structure of polychlorinated diben-zofurans (PCDFs) congeners and/or isomers. Quantitative structure-retention relationships (QSRRs) between the new VMDE parameters and gas chromatographic (GC) retention behavior of PCDFs were then generated by multiple linear regression (MLR) method for non-polar, moderately polar, and polar stationary phases. Four excellent models with high correlation coefficients, R=0.984-0.995, were proposed for non-polar columns (DB-5, SE-54, OV-101). For the moder-ately polar columns (OV-1701), the correlation coefficient of the developed good model is only 0.958. For the polar col-umns (SP-2300), the QSRR model is poor with R=0.884. Then cross validation with leave-one out of procedure (CV) is performed in high correlation with the non-polar (Rcv=992-0.974) and weakly polar (Rcv=921) columns and in little cor-relation (Rcv=0.834) with the polar columns. These results show that the new μ vector is suitable for describing the re-tention behaviors of PCDFs on non-polar and moderately polar stationary phases and not for the various gas chroma-tographic retention behaviors of PCDFs on the different po-larity-varying stationary phases.展开更多
Molecular dynamics simulation was employed to investigate the dynamical and structural properties of Al−Mg melts with the Al concentration systematically changed.The results show that the viscosity of Al67Mg33 abnorma...Molecular dynamics simulation was employed to investigate the dynamical and structural properties of Al−Mg melts with the Al concentration systematically changed.The results show that the viscosity of Al67Mg33 abnormally surpasses that of Al85Mg15 below 550 K,inconsistent with the tendency at high temperatures.The evolution of the icosahedral order population is found to account for this dynamic behavior.Structural analysis shows a preferred bonding between Al and Mg atoms in the nearest neighbor shells,while a repelling tendency between them in the second shells,leading to the prepeak emergence in the partial static structure factors.The formation of icosahedral clusters is constrained in the Al-rich compositions because of the lack of sufficient Mg atoms to stabilize the clusters geometrically.These results demonstrate the structural consequence through the interplay between geometric packing and chemical interaction.These findings are crucial to understanding the structure−dynamic properties in Al−Mg melts.展开更多
The reactivity parameters,Q and e,in the Q-e scheme reflect the reactivities of a monomer(or a radical)in free-radical copolymerizations.By applying multiple linear regression(MLR)analysis,the optimal quantitative str...The reactivity parameters,Q and e,in the Q-e scheme reflect the reactivities of a monomer(or a radical)in free-radical copolymerizations.By applying multiple linear regression(MLR)analysis,the optimal quantitative structure-activity relationship(QSAR)model for the reactivity parameter lnQ was developed based on five descriptors(NAF,NOF,EαLUMO,EβHOMO,and EβLUMO)and 69 monomers with the root mean square(rms)error of 0.61.The optimal MLR model of the parameter e obtained from five descriptors(TOcl,NpN,NSO,EαHOMO and DH)and 68 monomers produced rms error of 0.42.Compared with previous models,the two optimal MLR models in this paper show satisfactory statistical characteristics.The feasibility of combining 2D descriptors obtained from the monomers and 3D descriptors calculated from the radical structures(formed from monomers+H )to predict parameters Q and e has been demonstrated.展开更多
基金supported by National Natural Science Foundation of China,China(No.51901117,51801116)Youth Innovation and Technology Support Program of Shandong Provincial Colleges and Universities,China(No.2020KJA002)+2 种基金Youth Fund of Shandong Academy of Sciences,China(2020QN0021)Innovation Pilot Project for Fusion of Science,Education and Industry(International Cooperation)from Qilu University of Technology(Shandong Academy of Sciences),China(No.2020KJC-GH03)Several Policies on Promoting Collaborative Innovation and Industrialization of Achievements in Universities and Research Institutes,China(No.2019GXRC030)。
文摘In an effort to clarify the formation mechanism of LPSO structure in Mg-Y-Zn alloy,the chemical environment and structural ordering in liquid Mg-rich Mg-Y-Zn system are investigated with the aid of ab-initio molecular dynamics simulation.In liquid Mg-rich Mg-Y alloys,the strong Mg-Y interaction is determined,which promotes the formation of fivefold symmetric local structure.For Mg-Zn alloys,the weak Mg-Zn interaction results in the fivefold symmetry weakening in the liquid structure.Due to the coexistence of Y and Zn,the strong attractive interaction is introduced in liquid Mg-Y-Zn ternary alloy,and contributes to the clustering of Mg,Y,Zn launched from Zn.What is more,the distribution of local structures becomes closer to that in pure Mg compared with that in binary Mg-Y and Mg-Zn alloys.These results should relate to the origins of the Y/Zn segregation zone and close-packed stacking mode in LPSO structure,which provides a new insight into the formation mechanism of LPSO structure at atomic level.
文摘MK-1 molecule(C_(16)H_(16)O_(2)),the simplest structure of vitamin K(VK)compound family,is an extract from traditional Chinese medicine Cymbopogon distans(Nees ex Steud.)Wats(Chinese name YunXiangCao),which has attracted a great deal of attention in recent years due to its antiasthmatic,antitussives and expectorant effects.To investigate the molecular structure and chemical reactivity of MK-1 molecule,computational investigations on six conformational minima structures were carried out at the MP2/6-311++G(2d,2p)level of theory.Several local reactivity descriptors including condensed Fukui function,average local ionization energy,and molecular electrostatic potential on each individual atom were determined to predict the intrinsic reactivity of MK-1 molecule.
文摘Isopimpinellin(C13H10O5),alternative name 5,8-dimethoxypsoralen,is one of the furocoumarin compounds.This traditional Chinese medicine extract has attracted a great deal of attention in recent years due to its pharmacological properties,especially its antifungal effect.The main purpose of this study was to study the molecular structure and chemical reactivity of isopimpinellin using the density functional theory method.To understand and interpret the reactivity of isopimpinellin,various chemical reactivity descriptors such as chemical potential(μ),electronegativity(χ),chemical hardness(η)and electrophilicity(ω)and local reactivity index condensed Fukui function(fi(r))have been calculated with five hybrid functionals PBE1PBE,MPW1PW91,B3LYP,X3LYP and B3PW91.These chemical reactivity descriptors indicate that the isopimpinellin molecule has a good antioxidant activity,which could be one of the reasons for its action as an effective antifungal drug.The condensed Fukui functions of isopimpinellin molecule provide a complete scheme of chemical reactivity of one molecule.
基金National Natural Science Foundation of China(Grant No.30973628)the National Science and Technology Major Project of China(Grant No.SQ2018ZX090301)
文摘In the present study,we aimed to investigate the chemical constituents and analgesic activity of Aconitum kusnezoffii Reichb. The isolation and purification of components were achieved by a series of chromatography, including silica gel, Sephadex LH-20 and HPLC. By using spectroscopic analysis, their structures were identified. Using PDE-4A as analgesic target, moleculardocking was conducted between isolated compounds by using Schrodinger software. Neoline is a typical non-ester diterpene alkaloid. It was studied by using the mouse torsion body method and hot plate method. A total of 12 diterpene alkaloids were obtainedand identified as Mesaconitine(1), Bewutine (2), Bewudine (3), Songoramine (4), Songorine (5), Neoline (6), Talasamine (7), isotalatizidine (8), Hokbusine A (9), Mesaconine (10), 8-OEt-14-benzoylmesaconine (11), 8-Methoxy-14-benzoyl-beiwutinine (12).Compounds 9 and 12 were isolated from Aconitum kusnezoffii Reichb. for the first time. Twelve diterpenealkaloids could act on the analgesic target. Neoline is a typical non-ester diterpene alkaloid. It had significant analgesic effect. Diterpene alkaloids were the main components of Aconitum kusnezoffiiReichb., and they had good analgesic activity.
基金financially supported by the grants from Sask Pulse Growers,Natural Sciences and Engineering Research Council of Canada(NSERC)the Sask Canola,the Ministry of Agriculture Strategic Research Chair ProgramSask Milk.
文摘Background:This study was conducted to determine protein molecular structure profiles and quantify the relationship between protein structural features and protein metabolism and bioavailability of blend pel eted products(BPP)based on co-products(canola or carinata)from processing with different proportions of pulse pea screenings and lignosulfonate chemical compound.Method:The protein molecular structures were determined using the non-invasive advanced vibrational molecular spectroscopy(ATR-FT/IR)in terms of chemical structure and biofunctional groups of amides(ⅠandⅡ),α-helix andβ-sheet.Results:The results showed that increasing the level of the co-products in BPP significantly increased the spectral intensity of the amide area and amide height.The products exhibited similar protein secondaryα-helix toβ-sheet ratio.The protein molecular structure profiles(amidesⅠandⅡ,α-helix toβ-sheet)were highly associated with protein degradation kinetics and intestinal digestion.In conclusion,the non-invasive vibrational molecular spectroscopy(ATR-FT/IR)could be used to detect inherent structural make-up characteristics in BPP.Conclusion:The molecular structural features related to protein biopolymer were highly associated with protein utilization and metabolism.
文摘The molecular chain structure and crystalline structure of PB-ET copolyester made by con-densation polymerization are studied by means of <sup>13</sup>C nuclear magnetic resonance spectroscopy(<sup>13</sup>C NMR),dynamic mechanical analysis (DMA),wide angle X-ray scattering (WAXS),depolarized light intensity (DLI) and stress-strain measurement(S-S).It is shown that PB-ETcopolyester is a random copolymer.Because of different ratios of EG(ethylene glycol)to BD(butane diol)in the copolyester,its crystalline forms and mechanical properties vary remarkably.With the increasing amount of BD,its crystallization kinetic parameters n,k and t<sub>1/2</sub><sup>-1</sup> increaserapidly.When EG/BD equals 25/75 (mole ratio),the copolyester has αβ transition as PBTdoes.
文摘Infrared(IR)vibrational spectroscopy provides rich molecular fingerprint information for label-free detection of chemical bonds and conformational structures,with broad applications in biochemistry,pharmacology,and materials analysis.1-3 However,its practical utility in complex,especially aqueous,environments remains constrained by two fundamental limitations:the intrinsically weak vibrational absorption cross-sections of typical biomolecules and the poor spatial resolution dictated by mid-infrared(mid-IR)wavelengths,exacerbated by strong water absorption.
文摘The 14-3-3 protein family is among the most extensively studied, yet still largely mysterious protein families in mammals to date. As they are well recognized for their roles in apoptosis, cell cycle regulation, and proliferation in healthy cells, aberrant 14-3-3 expression has unsurprisingly emerged as instrumentalin the development of many cancers and in prognosis. Interestingly, while the seven known 14-3-3 isoforms in humans have many similar functions across cell types, evidence of isoform-specific functions and localization has been observed in both healthy and diseased cells The strikingly high similarity among 14-3-3 isoforms has made it difficult to delineate isoform-specific functions and for isoform-specific targeting. Here, we review our knowledge of 14-3-3 interactome(s) generated by high- throughput techniques, bioinformatics, structural genomics and chemical genornics and point out that integrating the information with molecular dynamics (MD) simulations may bring us new opportunity to the design of isoform-specific inhibitors, which can not only be used as powerful research tools for delineating distinct interactomes of individual 14-3-3 isoforms, but also can serve as potential new anti-cancer drugs that selectively target aberrant 14-3-3 isoform.
基金This work was supported by the Chunhui Project Fund of the Ministry of Education(Grant No.SCPF99-4-4+37)Fok Ying-Tung Educational Foundation(Grant No.FYTF98-7-6)+1 种基金Chongqing Applied Science Fund(Grant No,CASF01-3-6)Chongqing University ZYXT Innovation Fund(Grant No.CUIF03-5-6+04-10-10).
文摘Based on the identical group as a pseudo atom instead of a typical atom, a novel modified molecular dis-tance-edge (MDE) vector μ was developed in our laboratory to characterize chemical structure of polychlorinated diben-zofurans (PCDFs) congeners and/or isomers. Quantitative structure-retention relationships (QSRRs) between the new VMDE parameters and gas chromatographic (GC) retention behavior of PCDFs were then generated by multiple linear regression (MLR) method for non-polar, moderately polar, and polar stationary phases. Four excellent models with high correlation coefficients, R=0.984-0.995, were proposed for non-polar columns (DB-5, SE-54, OV-101). For the moder-ately polar columns (OV-1701), the correlation coefficient of the developed good model is only 0.958. For the polar col-umns (SP-2300), the QSRR model is poor with R=0.884. Then cross validation with leave-one out of procedure (CV) is performed in high correlation with the non-polar (Rcv=992-0.974) and weakly polar (Rcv=921) columns and in little cor-relation (Rcv=0.834) with the polar columns. These results show that the new μ vector is suitable for describing the re-tention behaviors of PCDFs on non-polar and moderately polar stationary phases and not for the various gas chroma-tographic retention behaviors of PCDFs on the different po-larity-varying stationary phases.
基金supported by the Open Research Fund of Songshan Lake Materials Laboratory,China (No.2022SLABFN14)Guangdong Basic and Applied Basic Research Foundation,China (No.2021A1515110108)the National Natural Science Foundation of China (No.52371168)。
文摘Molecular dynamics simulation was employed to investigate the dynamical and structural properties of Al−Mg melts with the Al concentration systematically changed.The results show that the viscosity of Al67Mg33 abnormally surpasses that of Al85Mg15 below 550 K,inconsistent with the tendency at high temperatures.The evolution of the icosahedral order population is found to account for this dynamic behavior.Structural analysis shows a preferred bonding between Al and Mg atoms in the nearest neighbor shells,while a repelling tendency between them in the second shells,leading to the prepeak emergence in the partial static structure factors.The formation of icosahedral clusters is constrained in the Al-rich compositions because of the lack of sufficient Mg atoms to stabilize the clusters geometrically.These results demonstrate the structural consequence through the interplay between geometric packing and chemical interaction.These findings are crucial to understanding the structure−dynamic properties in Al−Mg melts.
基金supported by the National Natural Science Foundation of China(No.21472040)the Scientific Research Fund of Hunan Education Department(Nos.16A047 and 18A344)the Open Project Program of Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Regeneration(Hunan Institute of Engineering)(2018KF11)
文摘The reactivity parameters,Q and e,in the Q-e scheme reflect the reactivities of a monomer(or a radical)in free-radical copolymerizations.By applying multiple linear regression(MLR)analysis,the optimal quantitative structure-activity relationship(QSAR)model for the reactivity parameter lnQ was developed based on five descriptors(NAF,NOF,EαLUMO,EβHOMO,and EβLUMO)and 69 monomers with the root mean square(rms)error of 0.61.The optimal MLR model of the parameter e obtained from five descriptors(TOcl,NpN,NSO,EαHOMO and DH)and 68 monomers produced rms error of 0.42.Compared with previous models,the two optimal MLR models in this paper show satisfactory statistical characteristics.The feasibility of combining 2D descriptors obtained from the monomers and 3D descriptors calculated from the radical structures(formed from monomers+H )to predict parameters Q and e has been demonstrated.