A graph G is one-regular if its automorphism group Aut(G) acts transitively and semiregularly on the arc set. A Cayley graph Cay(Г, S) is normal if Г is a normal subgroup of the full automorphism group of Cay(...A graph G is one-regular if its automorphism group Aut(G) acts transitively and semiregularly on the arc set. A Cayley graph Cay(Г, S) is normal if Г is a normal subgroup of the full automorphism group of Cay(Г, S). Xu, M. Y., Xu, J. (Southeast Asian Bulletin of Math., 25, 355-363 (2001)) classified one-regular Cayley graphs of valency at most 4 on finite abelian groups. Marusic, D., Pisanski, T. (Croat. Chemica Acta, 73, 969-981 (2000)) classified cubic one-regular Cayley graphs on a dihedral group, and all of such graphs turn out to be normal. In this paper, we classify the 4-valent one-regular normal Cayley graphs G on a dihedral group whose vertex stabilizers in Aut(G) are cyclic. A classification of the same kind of graphs of valency 6 is also discussed.展开更多
In this paper we determine all tetravalent Cayley graphs of a non-abelian group of order 3p2, where p is a prime number greater than 3, and with a cyclic Sylow p-subgroup. We show that all of these tetravalent Cayley ...In this paper we determine all tetravalent Cayley graphs of a non-abelian group of order 3p2, where p is a prime number greater than 3, and with a cyclic Sylow p-subgroup. We show that all of these tetravalent Cayley graphs are normal. The full automorphism group of these Cayley graphs is given and the half-transitivity and the arc-transitivity of these graphs are investigated. We show that this group is a 5-CI-group.展开更多
文摘A graph G is one-regular if its automorphism group Aut(G) acts transitively and semiregularly on the arc set. A Cayley graph Cay(Г, S) is normal if Г is a normal subgroup of the full automorphism group of Cay(Г, S). Xu, M. Y., Xu, J. (Southeast Asian Bulletin of Math., 25, 355-363 (2001)) classified one-regular Cayley graphs of valency at most 4 on finite abelian groups. Marusic, D., Pisanski, T. (Croat. Chemica Acta, 73, 969-981 (2000)) classified cubic one-regular Cayley graphs on a dihedral group, and all of such graphs turn out to be normal. In this paper, we classify the 4-valent one-regular normal Cayley graphs G on a dihedral group whose vertex stabilizers in Aut(G) are cyclic. A classification of the same kind of graphs of valency 6 is also discussed.
文摘In this paper we determine all tetravalent Cayley graphs of a non-abelian group of order 3p2, where p is a prime number greater than 3, and with a cyclic Sylow p-subgroup. We show that all of these tetravalent Cayley graphs are normal. The full automorphism group of these Cayley graphs is given and the half-transitivity and the arc-transitivity of these graphs are investigated. We show that this group is a 5-CI-group.