In this article, an attempt based on Spin Topological Space, STS, to give areasonable detailed account of the cause of photonic fermionization phenomena of light photon is made. STS is an unconventional spin space in ...In this article, an attempt based on Spin Topological Space, STS, to give areasonable detailed account of the cause of photonic fermionization phenomena of light photon is made. STS is an unconventional spin space in quantum mechanics, which can be used to account for where the unconventional half-integer spin eigenvalues phenomenon of light photon comes from. We suggest to dectect the possible existence of photonic one-third-spinization phenomenon of light photon, by using three beams of light photon in interference experiment.展开更多
There is no any spin rotational construction for zero spin particle, Casimir operator and the thired component of zero spin particle areandrespectively. Further, there are no spin interactions between zero spin partic...There is no any spin rotational construction for zero spin particle, Casimir operator and the thired component of zero spin particle areandrespectively. Further, there are no spin interactions between zero spin particle and other spin particles. This paper shows: in Spin Topological Space, STS [1], the third component of zero spin particle possesses non-zero eigenvalues besides original zero value, this leads to a miraculous spin interaction phenomenon between zero spin particle and other spin particles. In STS, zero spin particle could "dissolve other spin particles", degrade the values of their Casimir operator, and decay these spin particles into other forms of spin particle.展开更多
Spin-weighted spheroidal wave functions play an important role in the study of the linear stability of rotating Kerr black holes and are studied by the perturbation method in supersymmetric quantum mechanics. Their an...Spin-weighted spheroidal wave functions play an important role in the study of the linear stability of rotating Kerr black holes and are studied by the perturbation method in supersymmetric quantum mechanics. Their analytic ground eigenvalues and eigenfunctions are obtained by means of a series in low frequency. The ground eigenvalue and eigenfunction for small complex frequencies are numerically determined.展开更多
In quantum mechanics, there is a profound distinction between orbital angular momentum and spin angular momentum in which the former can be associated with the motion of a physical object in space but the latter canno...In quantum mechanics, there is a profound distinction between orbital angular momentum and spin angular momentum in which the former can be associated with the motion of a physical object in space but the latter cannot. The difference leads to a radical deviation in the formulation of their corresponding dynamics in which an orbital angular momentum can be described by using a coordinate system but a spin angular momentum cannot. In this work, we show that it is possible to treat spin angular momentum in the same manner as orbital angular momentum by formulating spin dynamics using Schrödinger equation in an intrinsic coordinate system. As an illustration, we apply the formulation to the dynamics of a hydrogen atom and show that the intrinsic spin angular momentum of the electron can take half-integral values and, in particular, the intrinsic mass of the electron can take negative values. We also consider a further extension by generalising the formulation so that it can be used to describe other intrinsic dynamics that may associate with a quantum particle, for example, when a hydrogen atom radiates a photon, the photon associated with the electron may also possess an intrinsic dynamics that can be described by an intrinsic wave equation that has a similar form to that for the electron.展开更多
The aim of this paper is to study the spectral gap and the logarithmic Sobolev constant for continuous spin systems. A simple but general result for estimating the spectral gap'of finite dimensional systems is given ...The aim of this paper is to study the spectral gap and the logarithmic Sobolev constant for continuous spin systems. A simple but general result for estimating the spectral gap'of finite dimensional systems is given by Theorem 1.1, in terms of the spectral gap for one-dimensional marginals. The study of this topic provides us a chance, and it is indeed another aim of the paper, to justify the power of the results obtained previously. The exact order in dimension one (Proposition 1.4), and then the precise leading order and the explicit positive regions of the spectral gap and the logarithmic Sobolev constant for two typical infinite-dimensional models are presented (Theorems 6.2 and 6.3). Since we are interested in explicit estimates, the computations become quite involved. A long section (Section 4) is devoted to the study of the spectral gap in dimension one.展开更多
In this work the one-band effective Hamiltonian governing the electronic states of a quantum dot/ring in a homogenous magnetic field is used to derive a pair/quadruple of nonlinear eigenvalue problems corresponding to...In this work the one-band effective Hamiltonian governing the electronic states of a quantum dot/ring in a homogenous magnetic field is used to derive a pair/quadruple of nonlinear eigenvalue problems corresponding to different spin orientations and in case of rotational symmetry additionally to quantum number±ℓ.We show,that each of those pair/quadruple of nonlinear problems allows for the minmax characterization of its eigenvalues under certain conditions,which are satisfied for our examples and the common InAs/GaAs heterojunction.Exploiting the minmax property we devise efficient iterative projection methods simultaneously handling the pair/quadruple of nonlinear problems and thereby saving up to 40%of the computational time as compared to the nonlinear Arnoldi method applied to each of the problems separately.展开更多
文摘In this article, an attempt based on Spin Topological Space, STS, to give areasonable detailed account of the cause of photonic fermionization phenomena of light photon is made. STS is an unconventional spin space in quantum mechanics, which can be used to account for where the unconventional half-integer spin eigenvalues phenomenon of light photon comes from. We suggest to dectect the possible existence of photonic one-third-spinization phenomenon of light photon, by using three beams of light photon in interference experiment.
文摘There is no any spin rotational construction for zero spin particle, Casimir operator and the thired component of zero spin particle areandrespectively. Further, there are no spin interactions between zero spin particle and other spin particles. This paper shows: in Spin Topological Space, STS [1], the third component of zero spin particle possesses non-zero eigenvalues besides original zero value, this leads to a miraculous spin interaction phenomenon between zero spin particle and other spin particles. In STS, zero spin particle could "dissolve other spin particles", degrade the values of their Casimir operator, and decay these spin particles into other forms of spin particle.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10875018 and 10773002)
文摘Spin-weighted spheroidal wave functions play an important role in the study of the linear stability of rotating Kerr black holes and are studied by the perturbation method in supersymmetric quantum mechanics. Their analytic ground eigenvalues and eigenfunctions are obtained by means of a series in low frequency. The ground eigenvalue and eigenfunction for small complex frequencies are numerically determined.
文摘In quantum mechanics, there is a profound distinction between orbital angular momentum and spin angular momentum in which the former can be associated with the motion of a physical object in space but the latter cannot. The difference leads to a radical deviation in the formulation of their corresponding dynamics in which an orbital angular momentum can be described by using a coordinate system but a spin angular momentum cannot. In this work, we show that it is possible to treat spin angular momentum in the same manner as orbital angular momentum by formulating spin dynamics using Schrödinger equation in an intrinsic coordinate system. As an illustration, we apply the formulation to the dynamics of a hydrogen atom and show that the intrinsic spin angular momentum of the electron can take half-integral values and, in particular, the intrinsic mass of the electron can take negative values. We also consider a further extension by generalising the formulation so that it can be used to describe other intrinsic dynamics that may associate with a quantum particle, for example, when a hydrogen atom radiates a photon, the photon associated with the electron may also possess an intrinsic dynamics that can be described by an intrinsic wave equation that has a similar form to that for the electron.
基金the Creative Research Group Fund of the National Natural Science Foundation of China (No.10121101)the"985"Project from the Ministry of Education of China
文摘The aim of this paper is to study the spectral gap and the logarithmic Sobolev constant for continuous spin systems. A simple but general result for estimating the spectral gap'of finite dimensional systems is given by Theorem 1.1, in terms of the spectral gap for one-dimensional marginals. The study of this topic provides us a chance, and it is indeed another aim of the paper, to justify the power of the results obtained previously. The exact order in dimension one (Proposition 1.4), and then the precise leading order and the explicit positive regions of the spectral gap and the logarithmic Sobolev constant for two typical infinite-dimensional models are presented (Theorems 6.2 and 6.3). Since we are interested in explicit estimates, the computations become quite involved. A long section (Section 4) is devoted to the study of the spectral gap in dimension one.
基金We would like to thank Oleksandr Voskoboynikov for his comments on the physical relevance of the model under consideration.We also thank the anonymous referees for their comments helping us to improve this manuscript.
文摘In this work the one-band effective Hamiltonian governing the electronic states of a quantum dot/ring in a homogenous magnetic field is used to derive a pair/quadruple of nonlinear eigenvalue problems corresponding to different spin orientations and in case of rotational symmetry additionally to quantum number±ℓ.We show,that each of those pair/quadruple of nonlinear problems allows for the minmax characterization of its eigenvalues under certain conditions,which are satisfied for our examples and the common InAs/GaAs heterojunction.Exploiting the minmax property we devise efficient iterative projection methods simultaneously handling the pair/quadruple of nonlinear problems and thereby saving up to 40%of the computational time as compared to the nonlinear Arnoldi method applied to each of the problems separately.