A 2D axisymmetric bin model is used to conduct idealized numerical experiments of cloud seeding.The simulations are performed for two clouds that differ in their initial wind shear.Results show that,although cloud see...A 2D axisymmetric bin model is used to conduct idealized numerical experiments of cloud seeding.The simulations are performed for two clouds that differ in their initial wind shear.Results show that,although cloud seeding with an ice concentration of 1000 Lin a regime that has relatively high supercooled liquid water can obtain a positive effect,the rainfall enhancement seems more pronounced when the cloud develops in a wind shear environment.In no-shear environment,the change in the microphysical thermodynamic field after seeding shows that,although more graupel is produced via riming and this can increase the surface rainfall intensity,the larger drag force and cooling of melting graupel is unfavorable for the development of cloud.On the contrary,when the cloud develops in a wind shear environment,since the main downdraft is behind the direction of movement of the cloud,its negative effect on precipitation is much weaker.展开更多
A detailed 3-D hail cloud numerical model and parameterization of mierophysieal processes were described in Part Ⅰ(Hong 1999)of this study.In this part,a hail cloud occurring in Xunyi area.Shaanxi Province on July 8,...A detailed 3-D hail cloud numerical model and parameterization of mierophysieal processes were described in Part Ⅰ(Hong 1999)of this study.In this part,a hail cloud occurring in Xunyi area.Shaanxi Province on July 8,1997 is simulated by the model to analyze mechanisms of hail formation and hail suppression with seeding.The results show that 97% of hail embryos are frozen drops.The seeding experiments with AgI in terms of heights show that if the seeding is made before hail formation,the optimum seeding position is located in the maximum updraft area and its center,i.e.,AgI is seeded in the zone with high water content to be coordinated with maximum zone of the updraft.The seeding makes concentrations of graupel and frozen drop increase and their average mass or size decrease,so that the proportion of conversion from graupel and frozen drop into hail descends greatly,and the mass and concentration of hailstone are decreased to achieve our purpose for hail suppression.展开更多
为研究云降水物理过程对四川盆地东北部暴雨的影响,利用FNL(final operational global analysis)全球分析资料和WRF(weather research and forecasting)模式4.3版对2022年10月4—5日发生的一次典型强降水过程进行云微物理方案敏感性试验...为研究云降水物理过程对四川盆地东北部暴雨的影响,利用FNL(final operational global analysis)全球分析资料和WRF(weather research and forecasting)模式4.3版对2022年10月4—5日发生的一次典型强降水过程进行云微物理方案敏感性试验,并与CMPAS(China Meteorological Administration multi-source merged precipitation analysis system)融合降水数据、GPM(global precipitation measurement)卫星探测产品进行对比分析。结果表明,6种微物理方案对川东北的降水范围模拟较好,雨带呈东北-西南走向,但强度偏弱,Lin和WSM6方案模拟出了强降水中心,空间分布与降水实况大致相同。Lin、WSM6和WDM6方案模拟的云场分布和强度最接近GPM卫星观测值,6种微物理方案对雨水含量的模拟最好,对云水和冰水含量的模拟呈现低估。云水、雨水和冰水在垂直方向上的匹配程度是此次模式预报差异产生的原因;另外,不同方案模拟的云微物理结构上的差异,以及各类水成物粒子的含量和分布是否有利于雪、霰粒子的生成及增长也是预报差异产生的重要原因;WSM6方案模拟的水成物在空间上更加匹配,模拟的降水极值更接近观测值,模拟效果相对较好。展开更多
In order to check the validity of the mathematical model for analyzing the flow field in the air-agitated seed precipitation tank,a scaled down experimental apparatus was designed and the colored tracer and KCl tracer...In order to check the validity of the mathematical model for analyzing the flow field in the air-agitated seed precipitation tank,a scaled down experimental apparatus was designed and the colored tracer and KCl tracer were added in the apparatus to follow the real flow line.Virtue tracers were considered in the mathematical model and the algorithm of tracers was built.The comparison of the results between the experiment and numerical calculation shows that the time of the tracer flows out of stirring tube are 40 s in the experiment and 42 s in numerical calculated result.The transient diffusion process and the solution residence time of the numerical calculation are in good agreement with the experimental results,which indicates that the mathematical model is reliable and can be used to predict the flow field of the air-agitated seed precipitation tank.展开更多
基金This study was jointly supported by the National Key Research and Development Program of China[grant number 2018YFC1507900]the National Natural Science Foundation of China[grant numbers 41875172 and 42075192].
文摘A 2D axisymmetric bin model is used to conduct idealized numerical experiments of cloud seeding.The simulations are performed for two clouds that differ in their initial wind shear.Results show that,although cloud seeding with an ice concentration of 1000 Lin a regime that has relatively high supercooled liquid water can obtain a positive effect,the rainfall enhancement seems more pronounced when the cloud develops in a wind shear environment.In no-shear environment,the change in the microphysical thermodynamic field after seeding shows that,although more graupel is produced via riming and this can increase the surface rainfall intensity,the larger drag force and cooling of melting graupel is unfavorable for the development of cloud.On the contrary,when the cloud develops in a wind shear environment,since the main downdraft is behind the direction of movement of the cloud,its negative effect on precipitation is much weaker.
文摘A detailed 3-D hail cloud numerical model and parameterization of mierophysieal processes were described in Part Ⅰ(Hong 1999)of this study.In this part,a hail cloud occurring in Xunyi area.Shaanxi Province on July 8,1997 is simulated by the model to analyze mechanisms of hail formation and hail suppression with seeding.The results show that 97% of hail embryos are frozen drops.The seeding experiments with AgI in terms of heights show that if the seeding is made before hail formation,the optimum seeding position is located in the maximum updraft area and its center,i.e.,AgI is seeded in the zone with high water content to be coordinated with maximum zone of the updraft.The seeding makes concentrations of graupel and frozen drop increase and their average mass or size decrease,so that the proportion of conversion from graupel and frozen drop into hail descends greatly,and the mass and concentration of hailstone are decreased to achieve our purpose for hail suppression.
基金Project(07JJ4016) supported by the Natural Science Foundation of Hunan Procvince,China
文摘In order to check the validity of the mathematical model for analyzing the flow field in the air-agitated seed precipitation tank,a scaled down experimental apparatus was designed and the colored tracer and KCl tracer were added in the apparatus to follow the real flow line.Virtue tracers were considered in the mathematical model and the algorithm of tracers was built.The comparison of the results between the experiment and numerical calculation shows that the time of the tracer flows out of stirring tube are 40 s in the experiment and 42 s in numerical calculated result.The transient diffusion process and the solution residence time of the numerical calculation are in good agreement with the experimental results,which indicates that the mathematical model is reliable and can be used to predict the flow field of the air-agitated seed precipitation tank.