The high morbidity and mortality rate of ischemic stroke in humans has led to the development of numerous animal models that replicate human stroke to further understand the underlying pathophysiology and to explore p...The high morbidity and mortality rate of ischemic stroke in humans has led to the development of numerous animal models that replicate human stroke to further understand the underlying pathophysiology and to explore potential therapeutic interventions.Although promising therapeutics have been identified using these animal models,with most undergoing significant testing in rodent models,the vast majority of these interventions have failed in human clinical trials.This failure of preclinical translation highlights the critical need for better therapeutic assessment in more clinically relevant ischemic stroke animal models.Large animal models such as non-human primates,sheep,pigs,and dogs are likely more predictive of human responses and outcomes due to brain anatomy and physiology that are more similar to humans-potentially making large animal testing a key step in the stroke therapy translational pipeline.The objective of this review is to highlight key characteristics that potentially make these gyrencephalic,large animal ischemic stroke models more predictive by comparing pathophysiological responses,tissue-level changes,and model limitations.展开更多
In the porcine model discussed in this review,the acute subdural hematoma was induced by subdural injection of autologous blood over the left parietal cortex,which led to a transient elevation of the intracerebral pre...In the porcine model discussed in this review,the acute subdural hematoma was induced by subdural injection of autologous blood over the left parietal cortex,which led to a transient elevation of the intracerebral pressure,measured by bilateral neuromonitoring.The hematoma-induced brain injury was associated with albumin extravasation,oxidative stress,reactive astrogliosis and microglial activation in the ipsilateral hemisphere.Further proteins and injury markers were validated to be used for immunohistochemistry of porcine brain tissue.The cerebral expression patterns of oxytocin,oxytocin receptor,cystathionine-γ-lyase and cystathionine-β-synthase were particularly interesting:these four proteins all co-localized at the base of the sulci,where pressure-induced brain injury elicits maximum stress.In this context,the pig is a very relevant translational model in contrast to the rodent brain.The structure of the porcine brain is very similar to the human:the presence of gyri and sulci(gyrencephalic brain),white matter to grey matter proportion and tentorium cerebelli.Thus,pressure-induced injury in the porcine brain,unlike in the rodent brain,is reflective of the human pathophysiology.展开更多
基金supported by the National Institutes of Health,National Institute of Neurological Disorders and Stroke,No.R01NS093314
文摘The high morbidity and mortality rate of ischemic stroke in humans has led to the development of numerous animal models that replicate human stroke to further understand the underlying pathophysiology and to explore potential therapeutic interventions.Although promising therapeutics have been identified using these animal models,with most undergoing significant testing in rodent models,the vast majority of these interventions have failed in human clinical trials.This failure of preclinical translation highlights the critical need for better therapeutic assessment in more clinically relevant ischemic stroke animal models.Large animal models such as non-human primates,sheep,pigs,and dogs are likely more predictive of human responses and outcomes due to brain anatomy and physiology that are more similar to humans-potentially making large animal testing a key step in the stroke therapy translational pipeline.The objective of this review is to highlight key characteristics that potentially make these gyrencephalic,large animal ischemic stroke models more predictive by comparing pathophysiological responses,tissue-level changes,and model limitations.
基金This work was supported by a grant from the Deutsche Bundeswehr and the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-Projektnummer 251293561-SFB 1149(to PR)a grant from the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-Projektnummer 251293561-SFB 1149 and Ulm University-Baustein-Programm(to TM).
文摘In the porcine model discussed in this review,the acute subdural hematoma was induced by subdural injection of autologous blood over the left parietal cortex,which led to a transient elevation of the intracerebral pressure,measured by bilateral neuromonitoring.The hematoma-induced brain injury was associated with albumin extravasation,oxidative stress,reactive astrogliosis and microglial activation in the ipsilateral hemisphere.Further proteins and injury markers were validated to be used for immunohistochemistry of porcine brain tissue.The cerebral expression patterns of oxytocin,oxytocin receptor,cystathionine-γ-lyase and cystathionine-β-synthase were particularly interesting:these four proteins all co-localized at the base of the sulci,where pressure-induced brain injury elicits maximum stress.In this context,the pig is a very relevant translational model in contrast to the rodent brain.The structure of the porcine brain is very similar to the human:the presence of gyri and sulci(gyrencephalic brain),white matter to grey matter proportion and tentorium cerebelli.Thus,pressure-induced injury in the porcine brain,unlike in the rodent brain,is reflective of the human pathophysiology.