期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Resistance of Cement-based Grouting Materials with Nano- SiO_(2) Emulsion to Chloride Ion Penetration
1
作者 LI Shuiping CHENG Jian +2 位作者 WEI Chao YUAN Bin YU Chengxiao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期114-119,共6页
The chloride penetration resistance of cement-based grout materials was improved by nano-silica emulsion.Specimens of mixtures containing different nano-silica particles or emulsions were exposed in sodium chloride so... The chloride penetration resistance of cement-based grout materials was improved by nano-silica emulsion.Specimens of mixtures containing different nano-silica particles or emulsions were exposed in sodium chloride solutions of specific concentrations with different test ages.Hardened properties of the mixes were assessed in terms of weight loss and compressive strength.X-ray diffraction(XRD)and scanning electron microscopy(SEM)of mixes were performed to analysis the phase evolution and microstructure.The results demonstrated that the introduction of nano-SiO_(2) emulsion significantly decreased the compressive strength loss and calcium hydroxide(CH)crystal content of hydration production,and then enhanced the resistance of cement-based grouting materials to chloride ion penetration.This improvement derives from the filling and pozzolanic effects of nano-SiO_(2) particles,which were incorporated via an emulsion and attributed to a well dispersion in grouting matrix. 展开更多
关键词 grouting materials nano-SiO_(2)emulsion chloride ion penetration weight loss strength loss
原文传递
Mechanical Performance Analysis of Rubber Elastic Polymer-Polyurethane Reinforced Cement-Based Composite Grouting Materials
2
作者 Baoping Zou Jiahao Yin +1 位作者 Chunhui Cao Xu Long 《Journal of Polymer Materials》 2025年第1期255-275,共21页
The ongoing operation of subway systems makes existing tunnels vulnerable to deformations and structural damage caused by adjacent foundation pit construction.Such deformations-manifesting as horizontal displacement,h... The ongoing operation of subway systems makes existing tunnels vulnerable to deformations and structural damage caused by adjacent foundation pit construction.Such deformations-manifesting as horizontal displacement,heightened lateral convergence,and internal force redistribution-may significantly compromise subway operational safety.Grouting remediation has become a widely adopted solution for tunnel deformation control and structural reinforcement.Developing optimized grouting materials is crucial for improving remediation effectiveness,ensuring structural integrity,and maintaining uninterrupted subway operations.This investigation explores the substitution of fine mortar aggregates with 0.1 mm discarded rubber particles at varying concentrations(0%,3%,6%,9%,12%,and 15%).Experimental parameters included three water-cement ratios(0.65,0.70,and 0.75)with constant 4%WPU content.Mechanical properties including compressive strength,flexural strength,and compression-to-bending ratio were evaluated across specified curing periods.Material characterization employed Fourier Transform Infrared Spectroscopy(FTIR)spectroscopy for molecular analysis and Scanning Electron Microscopy(SEM)for microstructural examination.Results indicate optimal toughness at 0.70 water-cement ratio with 6%rubber content,meeting mechanical pumping specifications while maintaining structural performance. 展开更多
关键词 Rubber particles POLYMER POLYURETHANE grouting material mechanical properties
在线阅读 下载PDF
Mechanical properties of anti-seepage grouting materials for heavy metal contaminated soil 被引量:3
3
作者 杨宇友 王建强 豆海军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3316-3323,共8页
Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed ... Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed with water glass in different ways to produce three composite grouting materials. In order to investigate the effect of water glass mixing ratio, Baume degree, fly ash and slag contents on the mechanical properties of the composite grouting materials, particularly their gel time and compressive strength, the beaker-to-beaker method of gel time test and unconfined compressive strength test were conducted. In addition, the phase composition and microstructure of the composite grouting materials were analyzed by the X-ray diffraction(XRD) and scanning electron microscope(SEM) techniques. The test results show that their gel time increases when water glass mixing ratio and Baume degree increase. The gel time increases dramatically when fly ash is added, but decreases slightly if fly ash is partly replaced by slag. When the mixing ratio of water glass is below 20%, their compressive strength increases with the increases of the ratio; when the ratio is above 20%, it significantly decreases. The compressive strength also tends to increase as Baume degree increases, and improves if fly ash and slag are added. 展开更多
关键词 heavy metal contaminated soil composite grouting material gel time compressive strength MICROSTRUCTURE
在线阅读 下载PDF
Compressive Strength of Polymer Grouting Material at Different Temperatures 被引量:13
4
作者 石明生 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第6期962-965,共4页
In order to study the influence of temperature on compressive strength of polymer grouting material,the compression specimen injection mold is self-made,and the uniaxial compressive test was carried out in the tempera... In order to study the influence of temperature on compressive strength of polymer grouting material,the compression specimen injection mold is self-made,and the uniaxial compressive test was carried out in the temperature control box under different temperatures.The change regularity of compressive strength of polymer grouting material under different temperatures and the law of volume changes of polymer samples were obtained.The experimental results show that:the compressive strength of polymer material increases with the increase of density;the temperature change has a certain influence on the compressive strength of polymer grouting material;the compressive strength decreases with temperature increases under the same density,but the compressive strength is not significantly affected by temperature when the density is less than 0.4 g/cm3;the volume change of the samples accords with the law of thermal expansion and contraction when temperature changes,and the increase of the volume is obvious when it is under high temperature.The achievements will provide an important basis to the application of the polymer grouting material. 展开更多
关键词 polymer grouting material compressive strength DENSITY TEMPERATURE VOLUME
原文传递
A new clay-cement composite grouting material for tunnelling in underwater karst area 被引量:11
5
作者 ZHANG Cong YANG Jun-sheng +4 位作者 FU Jin-yang OU Xue-feng XIE Yi-peng DAI Yong LEI Jin-shan 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1863-1873,共11页
A new clay-cement composite grouting material (CCGM) for tunnelling in underwater karst area was developed through the excellent synergistic interactions among cement, clay, meta-aluminate and lignin. The probable for... A new clay-cement composite grouting material (CCGM) for tunnelling in underwater karst area was developed through the excellent synergistic interactions among cement, clay, meta-aluminate and lignin. The probable formation mechanism of the material was proposed based on a series of experimental tests. The results show that with an optimal mass ratio (2:1:1:0.024) for water, cement, clay and additives, the obtained CCGM displayed an excellent grouting performance for karst in an underwater condition. Compared with neat cement grouts and clay-cement grouts, CCGM has faster gel time, lower bleeding rate and bulk shrinkage rate, greater initial viscosity, and a strong resistance to water dispersion. A successful engineering application indicates that CCGM not only fulfils a better grouting performance for karst in underwater conditions but also reduces the engineering cost and environmental pollution. 展开更多
关键词 tunnel karst UNDERWATER new grouting material clay-cement composite
在线阅读 下载PDF
Super-absorbent swellable polymer as grouting material for treatment of karst water inrush 被引量:9
6
作者 Shucai Li Chenyang Ma +5 位作者 Rentai Liu Mengjun Chen Jia Yan Zhenjun Wang Shaolong Duan Huasheng Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期753-763,共11页
Grouting is the most commonly used method to control water inrush in underground engineering.Traditional cement-based materials are easy to dilute and hard to coagulate under the influence of large flow and high-veloc... Grouting is the most commonly used method to control water inrush in underground engineering.Traditional cement-based materials are easy to dilute and hard to coagulate under the influence of large flow and high-velocity water inrush.To address these deficiencies,a new type of polymer grouting material with an excellent expansion ratio was synthesised.The material quickly absorbs water and has an expansion ratio of 1:300.The material is composed of a superabsorbent polymer(SAP),glycerol,and ethanol.The effects of water quality on the expansion ratio and expansion rate of the material were examined,and the best solid–liquid ratio for the slurry was determined by fluidity measurements.A karst specially designed pipeline water inrush test device showed that 800 g of SAP can achieve 0.6 m/s water flow blockage in the smooth pipeline,demonstrating that the ability of the SAP slurry to block water inrush is superior to those of other materials.This study provides a reference for water inrush plugging,and has important implications for the reduction and control of karst pipeline-type water inrush disasters,ensuring the safety of construction sites and preventing loss of life and damage to property. 展开更多
关键词 KARST Water inrush Model test grouting material Superabsorbent polymer
在线阅读 下载PDF
Macroscopic and microscopic trans-scale characteristics of pore structure of mine grouting materials 被引量:2
7
作者 Jian-hua HU Qi-fan REN +4 位作者 Shao-wei MA Quan JIANG Yuan-jian JIANG Jun-long SHANG Zhou-quan LUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期1067-1081,共15页
The pore structure and porosity of three kinds of mine grouting materials were characterized based on a thin-section analysis and low-field nuclear magnetic resonance (NMR) technique. The macroscopic pore interconnect... The pore structure and porosity of three kinds of mine grouting materials were characterized based on a thin-section analysis and low-field nuclear magnetic resonance (NMR) technique. The macroscopic pore interconnectivity was investigated using binary images captured from thin sections and a random walk pore spectral dimension (RWPSD) algorithm. The experimental results show that the microstructure of the grouting materials used consisted of interlayer pores, gel pores, capillary pores, circular air holes, and small fractures, and tailings can fill some gaps in the hydration product structure and dense hydration products. There is a positive correlation between pore interconnectivity and curing time. In addition, there is a relationship between pore interconnectivity and porosity. With increasing porosity and pore interconnectivity, a non-uniform pore structure occurs in mine grouting materials with an accelerator and results in reduced setting time and later strength. 展开更多
关键词 grouting material pore microstructure pore interconnectivity trans-scale study nuclear magnetic resonance thin-section analysis random walk pore spectral dimension
在线阅读 下载PDF
Properties and Hydration Mechanism on High-strength Anchorage Grouting Material for Highway Slope 被引量:2
8
作者 TANG Hua LI Xiangguo +3 位作者 ZHANG Fachun HE Chao TAN Hongbo FANG Rui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1181-1185,共5页
The rheological and mechanical properties of high-strength anchorage grouting materials for highway slope were investigated to optimize the mix proportion. The experimental results showed that the optimized mix propor... The rheological and mechanical properties of high-strength anchorage grouting materials for highway slope were investigated to optimize the mix proportion. The experimental results showed that the optimized mix proportion of high-strength anchorage grouting material (HAGM) was C3 (FA:SP-SF= 1:2:2; AGI:AG2=3:7 and 0.03% FC), which is agreement with the limitation of JCT 986-2005. Moreover, the XRD and FTIR results showed the addition of expansive components was in favor of the formation of ettringite. The intensity of AFt oeak of the samnles increased with the increasing of hydration time. 展开更多
关键词 grouting material FLUIDITY STRENGTH HYDRATION SLOPE
原文传递
Preparation and Performance Research of Cement-based Grouting Materials with High Early Strength and Expansion 被引量:8
9
作者 张毅 LI Wei 李东旭 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1115-1118,共4页
Main performance of the cement grouting materials made up by Portland cement(PC) and sulphoaluminate cement(SAC) was investigated in this program, a kind of expanding agent(EA) which was mainly constituted by me... Main performance of the cement grouting materials made up by Portland cement(PC) and sulphoaluminate cement(SAC) was investigated in this program, a kind of expanding agent(EA) which was mainly constituted by metakaolin and alunite was utilized for the compensation of the shrinkage, the hydration products and micro structure of the grouting materials were researched by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The results showed that a high expansion rate of the grouting materials could be reached as the expanding agent mixed in 6% of PC mass; the addition of SAC in the S2(PC:SAC:EA=34:6:2.25) brought a further improvement of the expansion rate of the grouting materials, the analysis of XRD and SEM showed that due to the reaction of expanding agent and SAC in the grouting materials, more ettringite crystal was generated, which resulted in a higher early strength, the addition of SAC played an expansion and strength reinforcement role in the grouting materials. 展开更多
关键词 grouting materials expanding agent sulphoaluminate cement hydration products performance research
原文传递
Experimental Study on Ratio and Performance of Coal Gangue/Bottom Ash Geopolymer Double-Liquid Grouting Material 被引量:1
10
作者 Wenqi Zhao Wenbin Sun +1 位作者 Zhenbo Cao Jianbang Hao 《Journal of Renewable Materials》 EI 2023年第7期3073-3089,共17页
Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from minin... Mine grouting reinforcement and water plugging projects often require large amounts of grouting materials.To reduce the carbon emission of grouting material production,improve the utilization of solid waste from mining enterprises,and meet the needs of mine reinforcement and seepage control,a double-liquid grouting material containing a high admixture of coal gangue powder/bottom ash geopolymer was studied.The setting time,fluidity,bleeding rate,and mechanical properties of grouting materials were studied through laboratory tests,and SEM analyzed the microstructure of the materials.The results show that the total mixture of calcined gangue does not exceed 60%.And the proportion of bottom ash replacing cement should be within 30%.At the same time,the volume mixture of sodium silicate is 20%.And the water-solid ratio does not exceed 0.6.The stability of the slurry prepared under this ratio is good.The microstructure of the stone body is dense,and its strength can meet the requirements of rock reinforcement and seepage control.Its economic and environmental benefits are more significant than the traditional cement-silicate double-liquid grouting material. 展开更多
关键词 Coal gangue municipal solid waste sodium silicate double liquid grouting material
在线阅读 下载PDF
Experimental Study of Moso Bamboo to-Steel Connections with Embedded Grouting Materials
11
作者 Shidong Nie Wei Fu +3 位作者 Hui Wang Di Wu Min Liu Junlong Wang 《Journal of Renewable Materials》 SCIE EI 2023年第3期1401-1423,共23页
Moso bamboos have attracted excessive attention as a renewable green building material to the concept of sustainable development.In this paper,the 20 bolted Moso bamboo connection specimens with embedded steel plates ... Moso bamboos have attracted excessive attention as a renewable green building material to the concept of sustainable development.In this paper,the 20 bolted Moso bamboo connection specimens with embedded steel plates and grouting materials were designed according to connection configurations with different bolt diameters and end distance of bolt holes,and their bearing capacities and failure modes were analyzed by static tension tests.According to the test results of all connectors,the failure modes of the specimens are divided into four categories,and the effects of bolt diameter and bolt hole end distance on the connection bearing capacity and failure mode are analyzed.The test results show that the deformation and failure process can be divided into four stages.The main influence factor of connector bearing capacity is bolt diameter.Connectors can be divided into four failure modes,and brittle failure can be avoided by adopting certain structural measures.Filling with grouting material can improve the bearing capacity of joints.Due to the large variability of bamboo,further experiments are needed. 展开更多
关键词 Moso bamboo connections embedded steel plates grouting materials bearing capacities failure modes
在线阅读 下载PDF
Experimental Evaluation of Thermal Properties of Grouting Materials
12
作者 Manuela Campanale Marta Deganello Lorenzo Moro 《Journal of Energy and Power Engineering》 2013年第8期1457-1463,共7页
This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusi... This study is aimed at the thermal analysis of sealant mortar (usually a mixtures of bentonite and cemem with addition of sand) used in geothermal cooling and heating. In particular, thermal conductivity and diffusivity measurements were performed on differem sealant mixtures by using Hot Disk thermal constants analyzer in order to identify the interesting thermal properties of grouting materials. The grouting materials that we considered are of porous nature and, if used in the presence of groundwater, have different levels of imbibitions. It is important to know the thermal behavior of these materials at different water content. A first set of measurements was performed on a not-tinted material at room temperature; then the samples were led to saturation conditions by contact capillary imbibitions with a cotton wool layer moistened in water. The determination of thermal conductivity in these test conditions appears to be critical compared to the measuremems on non-timed sample. The thermal conductivity tests have revealed how the thermal behavior of the samples analyzed is essentially determined by the density and water content of the material: in fact, the thermal conductivity increases of two to three times the value of the not-tinted material. 展开更多
关键词 Geothermal energy thermal conductivity sealant mortar hot disk grouting materials Portland cement mortar.
在线阅读 下载PDF
Grouting Flow in Deep Fractured Rock:A State-of-the-Art Review of Theory and Practice
13
作者 Xuewei Liu Jinze Sun +4 位作者 Bin Liu Yongshui Kang Yongchao Tian Yuan Zhou Quansheng Liu 《Fluid Dynamics & Materials Processing》 2025年第8期2047-2073,共27页
Grouting is a widely applied technique for reinforcing fractured zones in deep soft rock tunnels.By infiltrating rock fissures,slurry materials enhance structural integrity and improve the overall stability of the sur... Grouting is a widely applied technique for reinforcing fractured zones in deep soft rock tunnels.By infiltrating rock fissures,slurry materials enhance structural integrity and improve the overall stability of the surrounding rock.The performance of grouting is primarily governed by the flow behavior and diffusion extent of the slurry.This review considers recent advances in the theory and methodology of slurry flow and diffusion in fractured rock.It examines commonly used grout materials,including cement-based,chemical,and composite formulations,each offering distinct advantages for specific geological conditions.Themechanisms of reinforcement vary significantly across materials,requiring tailored application strategies.The rheological properties of grouting slurries,particularly cement-based types,have been widely modeled using classical constitutive approaches.However,the influence of time-and space-dependent viscosity evolution on slurry behavior remains underexplored.Experimental studies have provided valuable insights into slurry diffusion,yet further research is needed to capture real-time behavior under multi-scale and multi-physics coupling conditions.Similarly,current numerical simulations are largely limited to twoand three-dimensional models of single-fracture flow.These models often neglect the complexity of fracture networks and geological heterogeneity,highlighting a need for more realistic and integrated simulation frameworks.Future research should focus on:(1)fine-scale modeling of slurry hydration and mechanical reinforcement processes;(2)cross-scale analysis of slurry flow under coupled thermal,hydraulic,andmechanical fields;and(3)development of realtime,three-dimensional dynamic simulation tools to capture the full grouting process.These efforts will strengthen the theoretical foundation and practical effectiveness of grouting in complex underground environments. 展开更多
关键词 grouting material rheological characterization diffusion behavior numerical simulation method
在线阅读 下载PDF
Research on rheological properties of micro-fine grouting cement 被引量:3
14
作者 管学茂 王雨利 杨雷 《Journal of Coal Science & Engineering(China)》 2003年第1期67-72,共6页
This article studies the influence of the fineness of cement, fly ash(FA), its composite admixture and the amount and way mixed with superplasticizer on the rheological properties of micro fine cement(MC). By means of... This article studies the influence of the fineness of cement, fly ash(FA), its composite admixture and the amount and way mixed with superplasticizer on the rheological properties of micro fine cement(MC). By means of modern instruments and technologies (such as XRD, SEM, laser granulometer and superficial potential apparatus etc.), the article studies the mineral compositions, the appearance character of grains, particle size distribution and superficial potential of FA and its composite materials. And through that, the reducing mechanism of FA is thoroughly analyzed. The study shows that FA and its composite admixture are excellent components which can effectively improve the rheological properties of micro fine cement, and that the superplasticizer has a saturation point and the mixing way of it has a great influence on the rheological properties. 展开更多
关键词 micro fine cement rheological properties grouting materials
在线阅读 下载PDF
Grouting theories and technologies for the reinforcement of fractured rocks surrounding deep roadways 被引量:5
15
作者 Hongpu Kang Wenzhou Li +1 位作者 Fuqiang Gao Jianwei Yang 《Deep Underground Science and Engineering》 2023年第1期2-19,共18页
Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies f... Grouting is an effective method to improve the integrity and stability of fractured rocks that surround deep roadways.After years of research and practice,various theories and a complete set of grouting technologies for deep roadways with fractured rocks have been developed and are widely applied in Chinese coal mining production.This paper systematically summarizes and analyzes the research results concerning the theory,design,materials,processes,and equipment for the grouting and reinforcement of fractured rocks surrounding deep roadways.Specifically,in terms of grouting methods,pregrouting,groutingwhile-excavation,and postgrouting methods are explored;in terms of grouting theory,backfill grouting,compaction grouting,infiltration grouting,and fracture grouting theories are studied.In addition,this paper also studies grouting borehole arrangement,water-cement ratio,grouting pressure,grouting volume,grout diffusion radius,and other grouting parameters and their determination methods.On this basis,this paper explores the physical and mechanical properties of organic and organic-inorganic composite grouting materials,and assess grouting reinforcement quality testing methods and instruments.Taken as the field cases,the application of pregrouting in front of heading faces,groutingwhile-excavation,and postgrouting in the Kouzidong coal mine are then introduced,and the effects of the grouting reinforcements are evaluated.This paper proposes a development direction for grouting technology based on problems existing in the grouting reinforcement of fractured rocks surrounding deep roadways. 展开更多
关键词 deep roadways development direction field study fractured rocks grouting materials grouting methods high-pressure grouting
原文传递
Research and Application of Grouting Reinforcement Technology for Underground Road with Polymer
16
作者 WANGYifeng YAOBinwei +1 位作者 CHAIYili JINYunjian 《外文科技期刊数据库(文摘版)工程技术》 2022年第7期195-198,共4页
By using new materials and technologies, the traditional road maintenance method is reformed, so that the pavement strength meets the design requirements. Through engineering practice, its application and environmenta... By using new materials and technologies, the traditional road maintenance method is reformed, so that the pavement strength meets the design requirements. Through engineering practice, its application and environmental protection function are good, and the practice test shows that the method has the advantages of low investment, high speed, little pollution and little interference, which can effectively prolong the service life of the road and basically realize the reinforcement of the pavement structure which is not excavated all day. 展开更多
关键词 grouting technology DEFLECTION geopolymer grouting material
原文传递
Theory,technology and application of grouted bolting in soft rock roadways of deep coal mines 被引量:2
17
作者 Hongpu Kang Jianwei Yang +4 位作者 Pengfei Jiang Fuqiang Gao Wenzhou Li Jiafeng Li Huiyuan Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1463-1479,共17页
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous... The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated. 展开更多
关键词 deep coal mine soft rock roadway grouted bolting rock bolt and cable grouting material high-pressure splitting grouting collaborative control technology
在线阅读 下载PDF
Development and application of novel high‐efficiency composite ultrafine cement grouts for roadway in fractured surrounding rocks 被引量:1
18
作者 Maolin Tian Shaojie Chen +1 位作者 Lijun Han Hongtian Xiao 《Deep Underground Science and Engineering》 2024年第1期53-69,共17页
The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of ... The fractured surrounding rocks of roadways pose major challenges to safe mining.Grouting has often been used to reinforce the surrounding rocks to mitigate the safety risks associated with fractured rocks.The aim of this study is to develop highly efficient composite ultrafine cement(CUC)grouts to reinforce the roadway in fractured surrounding rocks.The materials used are ultrafine cement(UC),ultrafine fly ash(UF),ultrafine slag(US),and additives(superplasticizer[SUP],aluminate ultrafine expansion agent[AUA],gypsum,and retarder).The fluidity,bleeding,shrinkage,setting time,chemical composition,microstructure,degree of hydration,and mechanical property of grouting materials were evaluated in this study.Also,a suitable and effective CUC grout mixture was used to reinforce the roadway in the fractured surrounding rock.The results have shown that the addition of UF and US reduces the plastic viscosity of CUC,and the best fluidity can be obtained by adding 40%UF and 10%US.Since UC and UF particles are small,the pozzolanic effect of UF promotes the hydration reaction,which is conductive to the stability of CUC grouts.In addition,fine particles of UC,UF,and US can effectively fill the pores,while the volumetric expansion of AUA and gypsum decreases the pores and thus affects the microstructure of the solidified grout.The compressive test results have shown that the addition of specific amounts of UF and US can ameliorate the mechanical properties of CUC grouts.Finally,the CUC22‐8 grout was used to reinforce the No.20322 belt roadway.The results of numerical simulation and field monitoring have indicated that grouting can efficaciously reinforce the surrounding rock of the roadway.In this research,high‐performance CUC grouts were developed for surrounding rock reinforcement of underground engineering by utilizing UC and some additives. 展开更多
关键词 broken surrounding rock composite ultrafine cement(CUC)grouts grouting material grouting performance grouting reinforcement
原文传递
Failure analysis and control technology of intersections of large‑scale variable cross‑section roadways in deep soft rock 被引量:10
19
作者 Shengrong Xie Yiyi Wu +3 位作者 Dongdong Chen Ruipeng Liu Xintao Han Qiucheng Ye 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第2期124-146,共23页
In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupli... In deep underground mining,achieving stable support for roadways along with long service life is critical and the complex geological environment at such depths frequently presents a major challenge.Owing to the coupling action of multiple factors such as deep high stress,adjacent faults,cross-layer design,weak lithology,broken surrounding rock,variable cross-sections,wide sections up to 9.9 m,and clusters of nearby chambers,there was severe deformation and breakdown in the No.10 intersection of the roadway of large-scale variable cross-section at the−760 m level in a coal mine.As there are insufcient examples in engineering methods pertaining to the geological environment described above,the numerical calculation model was oversimplifed and support theory underdeveloped;therefore,it is imperative to develop an efective support system for the stability and sustenance of deep roadways.In this study,a quantitative analysis of the geological environment of the roadway through feld observations,borehole-scoping,and ground stress testing is carried out to establish the FLAC 3D variable cross-section crossing roadway model.This model is combined with the strain softening constitutive(surrounding rock)and Mohr–Coulomb constitutive(other deep rock formations)models to construct a compression arch mechanical model for deep soft rock,based on the quadratic parabolic Mohr criterion.An integrated control technology of bolting and grouting that is mainly composed of a high-strength hollow grouting cable bolt equipped with modifed cement grouting materials and a high-elongation cable bolt is developed by analyzing the strengthening properties of the surrounding rock before and after bolting,based on the Heok-Brown criterion.As a result of on-site practice,the following conclusions are drawn:(1)The plastic zone of the roof of the cross roadway is approximately 6 m deep in this environment,the tectonic stress is nearly 30 MPa,and the surrounding rock is severely fractured.(2)The deformation of the roadway progressively increases from small to large cross-sections,almost doubling at the largest cross-section.The plastic zone is concentrated at the top plate and shoulder and decreases progressively from the two sides to the bottom corner.The range of stress concentration at the sides of the intersection roadway close to the passageway is wider and higher.(3)The 7 m-thick reinforced compression arch constructed under the strengthening support scheme has a bearing capacity enhanced by 1.8 to 2.3 times and increase in thickness of the bearing structure by 1.76 times as compared to the original scheme.(4)The increase in the mechanical parameters c andφof the surrounding rock after anchoring causes a signifcant increase inσt;the pulling force of the cable bolt beneath the new grouting material is more than twice that of ordinary cement grout,and according to the test,the supporting stress feld shows that the 7.24 m surrounding rock is compacted and strengthened in addition to providing a strong foundation for the bolt(cable).On-site monitoring shows that the 60-days convergence is less than 30 mm,indicating that the stability control of the roadway is successful. 展开更多
关键词 Deep soft rock Variable cross-section Roadway intersection Bolting-grouting integration New grouting material
在线阅读 下载PDF
Theoretical and experimental study on the rheological properties of WIS grout and the dispersion and sealing mechanism 被引量:2
20
作者 Mengmeng Zhou Shucai Li +3 位作者 Zhuo Zheng Rentai Liu Mengjun Chen Chenyang Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第4期669-684,共16页
Recently a new grout material called water inflow sealing(WIS) was invented for sealing water inflow in tunneling and underground constructions. In this study, a special experimental method called intubated counter gr... Recently a new grout material called water inflow sealing(WIS) was invented for sealing water inflow in tunneling and underground constructions. In this study, a special experimental method called intubated counter grouting(ICG) was proposed to investigate the influence of water dispersion on the rheological properties of the grout during the grouting process, and to testify the sealing performance of the grout,such as instant gelling ability(IGA) and anti-dispersion ability(ADA). In the experiment, dispersion was restricted in the downstream of the channel with a high turbulence intensity. The influences of ADA and IGA were therefore decoupled and evaluated separately. Experimental results revealed two distinctive sealing mechanisms of WIS. For a low initial velocity of water, WIS turned the shear flow of water into an overall movement of a plug by absorbing water into the particles. For a high initial velocity and the situation that the particles reached the outlet before sufficiently expanding, WIS modified the rheology of the water in the channel and reduced its velocity till the static state. The distinctive feature of WIS brings a reformation on the sealing mechanism and provides an effective way to control water inflow with high pressure and velocity. 展开更多
关键词 WIS grout material grouting treatment Water inflow Sealing mechanism Flow regularity
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部