期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Experimental Study on the Bending Properties of Grouting Butt Joints Reinforced by Steel Plate Embedded in Bamboo Tube 被引量:1
1
作者 Ting Huang Xin Zhuo 《Journal of Renewable Materials》 SCIE EI 2022年第4期993-1005,共13页
The construction of grouting butt joints of bamboo tubes is simple and efficient.However,when the joint is bent,the low tensile strength of the mortar easily leads to cracking of the mortar prior to the failure of the... The construction of grouting butt joints of bamboo tubes is simple and efficient.However,when the joint is bent,the low tensile strength of the mortar easily leads to cracking of the mortar prior to the failure of the bamboo tube.In this paper,a comparative test of the bending capacity was performed on grouting butt joints reinforced by nonperforated,fully perforated,and semiperforated steel plates embedded in bamboo tubes to obtain the loaddisplacement curves and ultimate bearing capacity of various specimens.The strengthening effect of CFRP pasted on bamboo tubes was also studied.The results show that the opening at the end of the steel plate is beneficial to resist the slip between the mortar and steel plate,while the complete section in the middle of the steel plate is conducive to making full use of the tensile strength of the steel plate.Therefore,it is best to insert the semiperforated steel plate with openings in the end and without openings in the middle into the mortar to enhance the bending properties of the grouting butt joint,which can make the failure mode of the joint change from brittle failure of mortar to ductile compression failure of bamboo tube.In addition,pasting CFRP sheets on the external wall of the bamboo tube helps to reduce the tensile stress of the mortar,while increasing the width of the steel plate can increase the bending moment of inertia of the mixture of the steel plate and mortar.These two complementary measures are very effective in delaying the cracking of the bamboo tube and improving the bending capacity of the joint. 展开更多
关键词 Bamboo tube butt joint grouting connection perforated steel plate enhancement measure
在线阅读 下载PDF
Finite Element Analysis of the Influence of End Grouting Defects in Grouted Sleeve on the Structural Performance of Precast Reinforced Concrete Columns
2
作者 Shuoting Xiao Nikita Igorevich Fomin +1 位作者 Kirill Anatolyevich Khvostunkov Chong Liu 《Computer Modeling in Engineering & Sciences》 2025年第12期2821-2847,共27页
Precast concrete structures have gained popularity due to their advantages.However,the seismic performance of their connection joints remains an area of ongoing research and improvement.Grouted Sleeve Connection(GSC)o... Precast concrete structures have gained popularity due to their advantages.However,the seismic performance of their connection joints remains an area of ongoing research and improvement.Grouted Sleeve Connection(GSC)offers a solution for connecting reinforcements in precast components,but their vulnerability to internal defects,such as construction errors and material variability,can significantly impact performance.This article presents a finite element analysis(FEA)to evaluate the impact of internal grouting defects in GSC on the structural performance of precast reinforced concrete columns.Four finite elementmodels representing GSC with varying degrees of defects were used to investigate the effects on mechanical properties,including bearing capacity,stress-deformation behavior,and stiffness degradation.The study highlights the significant impact of internal grouting defects on the mechanical performance of GSC,with findings indicating a decrease in stiffness,increased plastic deformation,and reduced energy dissipation as the proportion of internal defects rises.The analysis reveals that the internal defects in GSC act as stress concentration points,leading to early crack formation and accelerated damage under cyclic loading.By improving construction quality and reducing the prevalence of grouting defects,the adverse effects on the performance of GSC can be mitigated.Compared to defect-free specimens,those with defects of 30%exhibited a 31.23%reduction in horizontal bearing capacity,highlighting the importance of minimizing defects in practical engineering applications. 展开更多
关键词 Precast concrete structures column grouted sleeve connections(GSC) seismic performance internal defects finite element analysis(FEA) mechanical properties
在线阅读 下载PDF
Seismic performance of precast bridge columns connected with grouted corrugated-metal duct through biaxial quasi-static experiment and modeling 被引量:6
3
作者 Xia Zhanghua Lin Shangshun +2 位作者 He Yongbo Ge Jiping Sun Jinlei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第3期747-770,共24页
In this paper,the seismic behaviors of precast bridge columns connected with grouted corrugated-metal duct(GCMD)were investigated through the biaxial quasi-static experiment and numerical simulation.With a geometric s... In this paper,the seismic behaviors of precast bridge columns connected with grouted corrugated-metal duct(GCMD)were investigated through the biaxial quasi-static experiment and numerical simulation.With a geometric scale ratio of 1:5,five specimens were fabricated,including four precast bridge columns connected with GCMD and one cast-in-place(CIP)bridge column.A finite element analysis model was also established by using OpenSees and was then calibrated by using the experimental results for parameter analysis.The results show the biaxial seismic performance of the precast bridge columns connected with GCMD was similar to the CIP bridge columns regarding ultimate bearing capacity and hysteresis energy,and further,that it could meet the design goal of equivalent performance.The seismic performance of the precast bridge columns connected with GCMD deteriorated more significantly under bi-directional load than under uni-directional load.A proper slenderness ratio(e.g.,7.0-10.0)and longitudinal reinforcement ratio could significantly improve the energy dissipation capacity and deformation capacity of the precast bridge columns,while the axial load ratio and concrete strength had little influence on the above properties.The research results could bring insights to the development of the seismic design of precast bridge columns connected with GCMD. 展开更多
关键词 precast bridge column cast-in-place column grouted corrugated-metal duct connection biaxial quasi-static test seismic performance hysteresis energy
在线阅读 下载PDF
Seismic performance of fabricated continuous girder bridge with grouting sleeve-prestressed tendon composite connections 被引量:2
4
作者 Jin WANG Weibing XU +4 位作者 Xiuli DU Yanjiang CHEN Mengjia DING Rong FANG Guang YANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第6期827-854,共28页
The seismic performance of a fully fabricated bridge is a key factor limiting its application.In this study,a fiber element model of a fabricated concrete pier with grouting sleeve-prestressed tendon composite connect... The seismic performance of a fully fabricated bridge is a key factor limiting its application.In this study,a fiber element model of a fabricated concrete pier with grouting sleeve-prestressed tendon composite connections was built and verified.A numerical analysis of three types of continuous girder bridges was conducted with different piers:a cast-in-place reinforced concrete pier,a grouting sleeve-fabricated pier,and a grouting sleeve-prestressed tendon composite fabricated pier.Furthermore,the seismic performance of the composite fabricated pier was investigated.The results show that the OpenSees fiber element model can successfully simulate the hysteresis behavior and failure mode of the grouted sleeve-fabricated pier.Under traditional non-near-fault ground motions,the pier top displacements of the grouting sleeve-fabricated pier and the composite fabricated pier were less than those of the cast-in-place reinforced concrete pier.The composite fabricated pier had a good self-centering capability.In addition,the plastic hinge zones of the grouting sleeve-fabricated pier and the composite fabricated pier shifted to the joint seam and upper edge of the grouting sleeve,respectively.The composite fabricated pier with optimal design parameters has good seismic performance and can be applied in high-intensity seismic areas;however,the influence of pile-soil interaction on its seismic performance should not be ignored. 展开更多
关键词 seismic performance continuous girder bridge grouting sleeve-prestressed tendon composite connections grouted sleeve connection design parameters
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部