In this paper,a data consistency condition(DCC)in Radon domain is re-derived from the perspective of Lie transformation group and compared with other two derivations.By carefully observing the proof procedure on the b...In this paper,a data consistency condition(DCC)in Radon domain is re-derived from the perspective of Lie transformation group and compared with other two derivations.By carefully observing the proof procedure on the basis of Lie transformation group,we may have a deeper insight on the essence of this DCC.Moreover,it may help determine whether there are the corresponding counterparts in both image and Radon domains.Following this line of thought,more data consistency conditions will possibly be explored in the future.This is definitely critical as data consistency conditions would be applied to the construction of algorithms for next-generation CT imaging.展开更多
The magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in the pres- ence of thermal stratification are examined. The pa...The magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in the pres- ence of thermal stratification are examined. The partial differential equations governing the problem under consideration are transformed by a special form of the Lie symmetry group transformations, i.e., a one-parameter group of transformations into a system of ordinary differential equations which are numerically solved using the Runge-Kutta-Gill- based shooting method. It is concluded that the flow field, temperature, and nanoparticle volume fraction profiles are significantly influenced by the thermal stratification and the magnetic field.展开更多
We discuss the fundamental solution for m-th powers of the sub-Laplacian on the Heisenberg group. We use the representation theory of the Heisenberg group to analyze the associated m-th powers of the sub-Laplacian and...We discuss the fundamental solution for m-th powers of the sub-Laplacian on the Heisenberg group. We use the representation theory of the Heisenberg group to analyze the associated m-th powers of the sub-Laplacian and to construct its fundamental solution. Besides, the series representation of the fundamental solution for square of the sub-Laplacian on the Heisenberg group is given and we also get the closed form of the fundamental solution for square of the sub-Laplacian on the Heisenberg group with dimension n = 2, 3, 4.展开更多
Using a new symmetry group theory, the transformation groups and symmetries of the general Broer-Kaup system are obtained. The results are much simpler than those obtained via the standard approaches.
In this paper, a characterization of almost periodicity of topological transformation groups on uniform spaces is given. By searching the appropriate base for uniform structure, it is shown that the topological transf...In this paper, a characterization of almost periodicity of topological transformation groups on uniform spaces is given. By searching the appropriate base for uniform structure, it is shown that the topological transformation group is topologically equivalent to an isometric one if it is uniformly equicontinuous.展开更多
In this paper, the finite symmetry transformation group of the (2+1)-dimensional coupled Burgers equation is studied by the modified direct method, and with the help of the truncated Painleve′ expansion approach, ...In this paper, the finite symmetry transformation group of the (2+1)-dimensional coupled Burgers equation is studied by the modified direct method, and with the help of the truncated Painleve′ expansion approach, some special localized structures for the (2+1)-dimensional coupled Burgers equation are obtained, in particular, the dromion-like and solitoff-like structures.展开更多
Group classification of quasilinear third-order evolution equations is given by using the classical infinitesimal Lie method, the technique of equivalence transformations, and the theory of classification of abstract ...Group classification of quasilinear third-order evolution equations is given by using the classical infinitesimal Lie method, the technique of equivalence transformations, and the theory of classification of abstract low-dimensional Lie algebras. We show that there are three equations admitting simple Lie algebras of dimension three. All non-equivalent equations admitting simple Lie algebras are nothing but these three. Furthermore, we also show that there exist two, five, twenty-nine and twenty-six non- equivalent third-order nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively.展开更多
In this paper,including some partial differential equations with a number of independent variables, which can he reduced by the infinitesimal form of the group, we obtain the theory of similarity transformation and it...In this paper,including some partial differential equations with a number of independent variables, which can he reduced by the infinitesimal form of the group, we obtain the theory of similarity transformation and its application of the second order nonlinear partial differential equations which have two independent variables and two dependent variables in mechanics.展开更多
This paper considers wavelet transforms associated to the affine group, which is more general than the paper given by R. Murenzi, and it seems more important in mathematical theory and more natural to be used to analy...This paper considers wavelet transforms associated to the affine group, which is more general than the paper given by R. Murenzi, and it seems more important in mathematical theory and more natural to be used to analyze signals in more than 1-dimension.展开更多
This paper proposes a novel inverse synthetic aperture radar(ISAR) imaging method based on second-order keystone transform(KT) and Sandglass transform for group targets flying in a formation with constant accelera...This paper proposes a novel inverse synthetic aperture radar(ISAR) imaging method based on second-order keystone transform(KT) and Sandglass transform for group targets flying in a formation with constant accelerated rectilinear motion in the same radar beam. First, range curvature and range walk of each sub-target among group targets are corrected by the second-order KT combined with the quadratic phase term compensation. After range alignment, the signals in each range frequency cell can be modelled as multiple chirp signals and then the Sandglass transform is utilized to cross-range imaging, which transforms the time–frequency distribution of the signals in each range frequency cell into beelines parallel to the slow time axis simultaneously. Finally, cross-range profiles of group targets in each range frequency cell are obtained via a projection of the perk of every scatterer in the two-dimensional accumulation plane onto the frequency axis. The advantage of the proposed method is that it can align range profiles of each sub-target simultaneously and image cross-range profiles directly without separating the returned signals, which simplifies the operation procedure. Simulation results are used to demonstrate the effectiveness of the proposed method.展开更多
The Cauchy stress equations (1823), the Cosserat couple-stress equations (1909), the Clausius virial equation (1870) and the Maxwell/Weyl equations (1873, 1918) are among the most famous partial differential equations...The Cauchy stress equations (1823), the Cosserat couple-stress equations (1909), the Clausius virial equation (1870) and the Maxwell/Weyl equations (1873, 1918) are among the most famous partial differential equations that can be found today in any textbook dealing with elasticity theory, continuum mechanics, thermodynamics or electromagnetism. Over a manifold of dimension n, their respective numbers are n,n(n−1)/2,1,nwith a total of N=(n+1)(n+2)/2, that is 15 when n=4for space-time. This is also just the number of parameters of the Lie group of conformal transformations with n translations, n(n−1)/2rotations, 1 dilatation and n highly non-linear elations introduced by E. Cartan in 1922. The purpose of this paper is to prove that the form of these equations only depends on the structure of the conformal group for an arbitrary n≥1because they are described as a whole by the (formal) adjoint of the first Spencer operator existing in the Spencer differential sequence. Such a group theoretical implication is obtained by applying totally new differential geometric methods in field theory. In particular, when n=4, the main idea is not to shrink the group from 10 down to 4 or 2 parameters by using the Schwarzschild or Kerr metrics instead of the Minkowski metric, but to enlarge the group from 10 up to 11 or 15 parameters by using the Weyl or conformal group instead of the Poincaré group of space-time. Contrary to the Einstein equations, these equations can be all parametrized by the adjoint of the second Spencer operator through Nn(n−1)/2potentials. These results bring the need to revisit the mathematical foundations of both General Relativity and Gauge Theory according to a clever but rarely quoted paper of H. Poincaré (1901). They strengthen the recent comments we already made about the dual confusions made by Einstein (1915) while following Beltrami (1892), both using the same Einstein operator but ignoring it is self-adjoint in the framework of differential double duality.展开更多
For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,...For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,the Noether symmetry, Lie symmetry, and Noether conserved quantity are given. Secondly, the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations is obtained. Finally, a set of nonNoether conserved quantities of the system are given by the Noether symmetry, and an example is given to illustrate the application of the results.展开更多
This paper reports the new progresses in the axiomatization of tensor anal- ysis, including the thought of axiomatization, the concept of generalized components, the axiom of covariant form invariability, the axiomati...This paper reports the new progresses in the axiomatization of tensor anal- ysis, including the thought of axiomatization, the concept of generalized components, the axiom of covariant form invariability, the axiomatized definition, the algebraic structure, the transformation group, and the simple calculation of generalized covariant differentia- tions. These progresses strengthen the tendency of the axiomatization of tensor analysis.展开更多
This paper further extends the generalized covari ant derivative from the first covariant derivative to the sec ond one on curved surfaces. Through the linear transforma tion between the first generalized covariant de...This paper further extends the generalized covari ant derivative from the first covariant derivative to the sec ond one on curved surfaces. Through the linear transforma tion between the first generalized covariant derivative and the second one, the second covariant differential transformation group is set up. Under this transformation group, the sec ond class of differential invariants and integral invariants on curved surfaces is made clear. Besides, the symmetric struc ture of the tensor analysis on curved surfaces are revealed.展开更多
This paper extends the classical covariant deriva tive to the generalized covariant derivative on curved sur faces. The basement for the extension is similar to the pre vious paper, i.e., the axiom of the covariant fo...This paper extends the classical covariant deriva tive to the generalized covariant derivative on curved sur faces. The basement for the extension is similar to the pre vious paper, i.e., the axiom of the covariant form invariabil ity. Based on the generalized covariant derivative, a covari ant differential transformation group with orthogonal duality is set up. Through such orthogonal duality, tensor analy sis on curved surfaces is simplified intensively. Under the covariant differential transformation group, the differential invariabilities and integral invariabilities are constructed on curved surfaces.展开更多
The steady two-dimensional magnetohydrodynamic stagnation flow towards a nonlinear stretching surface is studied. The no-slip condition on the solid boundary is replaced with a partial slip condition. A scaling group ...The steady two-dimensional magnetohydrodynamic stagnation flow towards a nonlinear stretching surface is studied. The no-slip condition on the solid boundary is replaced with a partial slip condition. A scaling group transformation is used to get the invariants. Using the invariants, a third-order ordinary differential equation corresponding to the momentum is obtained. An analytical solution is obtained in a series form using a homotopy analysis method. Reliability and efficiency of series solutions are shown by the good agreement with numerical results presented in the literature. The effects of the slip parameter, the magnetic field parameter, the velocity ratio parameter, the suction velocity parameter, and the power law exponent on the flow are investigated. The results show that the velocity and shear stress profiles are greatly influenced by these parameters.展开更多
This paper reports a new derivative in the Eulerian description in flat space-the generalized covariant derivative with respect to time. The following contents are included:(a) the restricted covariant derivative with...This paper reports a new derivative in the Eulerian description in flat space-the generalized covariant derivative with respect to time. The following contents are included:(a) the restricted covariant derivative with respect to time for Eulerian component is defined;(b) the postulate of the covariant form invariability in time field is set up;(c) the generalized covariant derivative with respect to time for generalized Eulerian component is defined;(d) the algebraic structure of the generalized covariant derivative with respect to time is made clear;(e) the covariant differential transformation group in time filed is derived. These progresses reveal the covariant form invariability of Eulerian space and time.展开更多
The previous paper reported a new derivative in the Eulerian description in flat space—the generalized covariant derivative of generalized Eulerian component with respect to time. This paper extends the thought from ...The previous paper reported a new derivative in the Eulerian description in flat space—the generalized covariant derivative of generalized Eulerian component with respect to time. This paper extends the thought from the Eulerian description to the Lagrangian description:on the basis of the postulate of covariant form invariability in time field, we define a new derivative in the Lagrangian description in flat space—the generalized covariant derivative of generalized Lagrangian component with respect to time. Besides, the covariant differential transformation group is set up. The covariant form invariability of Lagrangian space-time is ascertained.展开更多
A more general assumption than that in the classical one-dimensional large strain consolidation theory is adopted and the exact analytical solution of nonlinear finite strain self-weight consolidation based on this as...A more general assumption than that in the classical one-dimensional large strain consolidation theory is adopted and the exact analytical solution of nonlinear finite strain self-weight consolidation based on this assumption is obtained. By applying the same experimental data, the comparison of the solutions of linear and nonlinear finite strain theory, as well as the numerical calculating results based on finite element method is presented. The results of the comparison show that the analytical solution obtained here takes on better agreement with practical cases than that of linear one, and they also show that, compared with the solutions based on nonlinear theory, the settlement and the consolidation degree based on linear theory are smaller.展开更多
基金supported in partby Shaanxi Provincial Natural Science Foundation of China(No.2023-JC-YB-521)by National Natural Science Foundation of China(NSFC)(No.12475313)+1 种基金Excellent Youth Fund of Shandong Natural Science Foundation(ZR2024YQ066)by Xi'an Science and Technology Program of China(No.23GXFW0065).
文摘In this paper,a data consistency condition(DCC)in Radon domain is re-derived from the perspective of Lie transformation group and compared with other two derivations.By carefully observing the proof procedure on the basis of Lie transformation group,we may have a deeper insight on the essence of this DCC.Moreover,it may help determine whether there are the corresponding counterparts in both image and Radon domains.Following this line of thought,more data consistency conditions will possibly be explored in the future.This is definitely critical as data consistency conditions would be applied to the construction of algorithms for next-generation CT imaging.
文摘The magnetohydrodynamics (MHD) convection flow and heat transfer of an incompressible viscous nanofluid past a semi-infinite vertical stretching sheet in the pres- ence of thermal stratification are examined. The partial differential equations governing the problem under consideration are transformed by a special form of the Lie symmetry group transformations, i.e., a one-parameter group of transformations into a system of ordinary differential equations which are numerically solved using the Runge-Kutta-Gill- based shooting method. It is concluded that the flow field, temperature, and nanoparticle volume fraction profiles are significantly influenced by the thermal stratification and the magnetic field.
基金Supported by Doctor Special Foundation of Jiangsu Second Normal University(JSNU2015BZ07)
文摘We discuss the fundamental solution for m-th powers of the sub-Laplacian on the Heisenberg group. We use the representation theory of the Heisenberg group to analyze the associated m-th powers of the sub-Laplacian and to construct its fundamental solution. Besides, the series representation of the fundamental solution for square of the sub-Laplacian on the Heisenberg group is given and we also get the closed form of the fundamental solution for square of the sub-Laplacian on the Heisenberg group with dimension n = 2, 3, 4.
文摘Using a new symmetry group theory, the transformation groups and symmetries of the general Broer-Kaup system are obtained. The results are much simpler than those obtained via the standard approaches.
文摘In this paper, a characterization of almost periodicity of topological transformation groups on uniform spaces is given. By searching the appropriate base for uniform structure, it is shown that the topological transformation group is topologically equivalent to an isometric one if it is uniformly equicontinuous.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11175092)the Scientific Research Fund of Education Department of Zhejiang Province of China (Grant No. Y201017148)K. C. Wong Magna Fund in Ningbo University
文摘In this paper, the finite symmetry transformation group of the (2+1)-dimensional coupled Burgers equation is studied by the modified direct method, and with the help of the truncated Painleve′ expansion approach, some special localized structures for the (2+1)-dimensional coupled Burgers equation are obtained, in particular, the dromion-like and solitoff-like structures.
基金supported by the National Key Basic Research Project of China (973 Program)(No. 2004CB318000)
文摘Group classification of quasilinear third-order evolution equations is given by using the classical infinitesimal Lie method, the technique of equivalence transformations, and the theory of classification of abstract low-dimensional Lie algebras. We show that there are three equations admitting simple Lie algebras of dimension three. All non-equivalent equations admitting simple Lie algebras are nothing but these three. Furthermore, we also show that there exist two, five, twenty-nine and twenty-six non- equivalent third-order nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively.
文摘In this paper,including some partial differential equations with a number of independent variables, which can he reduced by the infinitesimal form of the group, we obtain the theory of similarity transformation and its application of the second order nonlinear partial differential equations which have two independent variables and two dependent variables in mechanics.
文摘This paper considers wavelet transforms associated to the affine group, which is more general than the paper given by R. Murenzi, and it seems more important in mathematical theory and more natural to be used to analyze signals in more than 1-dimension.
基金supported by the National Natural Science Foundation of China (No. 61372159)
文摘This paper proposes a novel inverse synthetic aperture radar(ISAR) imaging method based on second-order keystone transform(KT) and Sandglass transform for group targets flying in a formation with constant accelerated rectilinear motion in the same radar beam. First, range curvature and range walk of each sub-target among group targets are corrected by the second-order KT combined with the quadratic phase term compensation. After range alignment, the signals in each range frequency cell can be modelled as multiple chirp signals and then the Sandglass transform is utilized to cross-range imaging, which transforms the time–frequency distribution of the signals in each range frequency cell into beelines parallel to the slow time axis simultaneously. Finally, cross-range profiles of group targets in each range frequency cell are obtained via a projection of the perk of every scatterer in the two-dimensional accumulation plane onto the frequency axis. The advantage of the proposed method is that it can align range profiles of each sub-target simultaneously and image cross-range profiles directly without separating the returned signals, which simplifies the operation procedure. Simulation results are used to demonstrate the effectiveness of the proposed method.
文摘The Cauchy stress equations (1823), the Cosserat couple-stress equations (1909), the Clausius virial equation (1870) and the Maxwell/Weyl equations (1873, 1918) are among the most famous partial differential equations that can be found today in any textbook dealing with elasticity theory, continuum mechanics, thermodynamics or electromagnetism. Over a manifold of dimension n, their respective numbers are n,n(n−1)/2,1,nwith a total of N=(n+1)(n+2)/2, that is 15 when n=4for space-time. This is also just the number of parameters of the Lie group of conformal transformations with n translations, n(n−1)/2rotations, 1 dilatation and n highly non-linear elations introduced by E. Cartan in 1922. The purpose of this paper is to prove that the form of these equations only depends on the structure of the conformal group for an arbitrary n≥1because they are described as a whole by the (formal) adjoint of the first Spencer operator existing in the Spencer differential sequence. Such a group theoretical implication is obtained by applying totally new differential geometric methods in field theory. In particular, when n=4, the main idea is not to shrink the group from 10 down to 4 or 2 parameters by using the Schwarzschild or Kerr metrics instead of the Minkowski metric, but to enlarge the group from 10 up to 11 or 15 parameters by using the Weyl or conformal group instead of the Poincaré group of space-time. Contrary to the Einstein equations, these equations can be all parametrized by the adjoint of the second Spencer operator through Nn(n−1)/2potentials. These results bring the need to revisit the mathematical foundations of both General Relativity and Gauge Theory according to a clever but rarely quoted paper of H. Poincaré (1901). They strengthen the recent comments we already made about the dual confusions made by Einstein (1915) while following Beltrami (1892), both using the same Einstein operator but ignoring it is self-adjoint in the framework of differential double duality.
基金国家自然科学基金,湖南省自然科学基金,the Scientific Research Foundation of Education Burean of Hunan Province
文摘For the holonomic nonconservative system, by using the Noether symmetry, a non-Noether conserved quantity is obtained directly under general infinitesimal transformations of groups in which time is variable. At first,the Noether symmetry, Lie symmetry, and Noether conserved quantity are given. Secondly, the condition under which the Noether symmetry is a Lie symmetry under general infinitesimal transformations is obtained. Finally, a set of nonNoether conserved quantities of the system are given by the Noether symmetry, and an example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China(Nos.11072125 and11272175)the Natural Science Foundation of Jiangsu Province(No.SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(No.20130002110044)
文摘This paper reports the new progresses in the axiomatization of tensor anal- ysis, including the thought of axiomatization, the concept of generalized components, the axiom of covariant form invariability, the axiomatized definition, the algebraic structure, the transformation group, and the simple calculation of generalized covariant differentia- tions. These progresses strengthen the tendency of the axiomatization of tensor analysis.
基金supported by the NSFC(11072125 and 11272175)the NSF of Jiangsu Province(SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(20130002110044)
文摘This paper further extends the generalized covari ant derivative from the first covariant derivative to the sec ond one on curved surfaces. Through the linear transforma tion between the first generalized covariant derivative and the second one, the second covariant differential transformation group is set up. Under this transformation group, the sec ond class of differential invariants and integral invariants on curved surfaces is made clear. Besides, the symmetric struc ture of the tensor analysis on curved surfaces are revealed.
基金supported by the NSFC(11072125 and 11272175)the NSF of Jiangsu Province(SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(20130002110044)
文摘This paper extends the classical covariant deriva tive to the generalized covariant derivative on curved sur faces. The basement for the extension is similar to the pre vious paper, i.e., the axiom of the covariant form invariabil ity. Based on the generalized covariant derivative, a covari ant differential transformation group with orthogonal duality is set up. Through such orthogonal duality, tensor analy sis on curved surfaces is simplified intensively. Under the covariant differential transformation group, the differential invariabilities and integral invariabilities are constructed on curved surfaces.
基金Project supported by the National Natural Science Foundation of China (No. 50936003)the Open Project of State Key Laboratory for Advanced Metals and Materials and the Research Foundation of Engineering Research Institute of University of Science and Technology Beijing (No. 2009Z-02)
文摘The steady two-dimensional magnetohydrodynamic stagnation flow towards a nonlinear stretching surface is studied. The no-slip condition on the solid boundary is replaced with a partial slip condition. A scaling group transformation is used to get the invariants. Using the invariants, a third-order ordinary differential equation corresponding to the momentum is obtained. An analytical solution is obtained in a series form using a homotopy analysis method. Reliability and efficiency of series solutions are shown by the good agreement with numerical results presented in the literature. The effects of the slip parameter, the magnetic field parameter, the velocity ratio parameter, the suction velocity parameter, and the power law exponent on the flow are investigated. The results show that the velocity and shear stress profiles are greatly influenced by these parameters.
基金Project supported by the National Natural Sciences Foundation of China(No.11272175)the Specialized Research Found for Doctoral Program of Higher Education(No.20130002110044)
文摘This paper reports a new derivative in the Eulerian description in flat space-the generalized covariant derivative with respect to time. The following contents are included:(a) the restricted covariant derivative with respect to time for Eulerian component is defined;(b) the postulate of the covariant form invariability in time field is set up;(c) the generalized covariant derivative with respect to time for generalized Eulerian component is defined;(d) the algebraic structure of the generalized covariant derivative with respect to time is made clear;(e) the covariant differential transformation group in time filed is derived. These progresses reveal the covariant form invariability of Eulerian space and time.
基金Project supported by the National Natural Sciences Foundation of China(No.11272175)the Specialized Research Found for Doctoral Program of Higher Education(No.20130002110044)
文摘The previous paper reported a new derivative in the Eulerian description in flat space—the generalized covariant derivative of generalized Eulerian component with respect to time. This paper extends the thought from the Eulerian description to the Lagrangian description:on the basis of the postulate of covariant form invariability in time field, we define a new derivative in the Lagrangian description in flat space—the generalized covariant derivative of generalized Lagrangian component with respect to time. Besides, the covariant differential transformation group is set up. The covariant form invariability of Lagrangian space-time is ascertained.
文摘A more general assumption than that in the classical one-dimensional large strain consolidation theory is adopted and the exact analytical solution of nonlinear finite strain self-weight consolidation based on this assumption is obtained. By applying the same experimental data, the comparison of the solutions of linear and nonlinear finite strain theory, as well as the numerical calculating results based on finite element method is presented. The results of the comparison show that the analytical solution obtained here takes on better agreement with practical cases than that of linear one, and they also show that, compared with the solutions based on nonlinear theory, the settlement and the consolidation degree based on linear theory are smaller.