The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly...The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.展开更多
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera...The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.展开更多
In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is prop...In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is proposed. The throughput maximum and average queue ratio minimum for the critical route of the intersection group are selected as the optimization objectives of the traffic signal control for the over-saturated condition. The consequences of the efficiency between traffic signal timing plans generated by the proposed algorithm and a commonly utilized signal timing optimization software Synchro are compared in a VISSIM signal control application programming interfaces (SCAPI) simulation environment by using real filed observed traffic data. The simulation results indicate that the signal timing plan generated by the proposed algorithm is more efficient in managing oversaturated flows at intersection groups, and, thus, it has the capability of optimizing signal timing under the over-saturated conditions.展开更多
A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problem...A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problems.The SGSO adopts an improved sharing strategy which shares information of not only the best member but also the other good members,and uses a simpler search method instead of searching by the head angle.Furthermore,the SGSO increases the percentage of scroungers to accelerate convergence speed.Compared with genetic algorithm(GA),particle swarm optimizer(PSO)and group search optimizer(GSO),SGSO is tested on seven benchmark functions with dimensions 30,100,500 and 1 000.It can be concluded that the SGSO has a remarkably superior performance to GA,PSO and GSO for large scale global optimization.展开更多
The coordinated and integrated development of regional airport group system has been identified as an important research topic in the field of air traffic management in China.However,due to the clear limitation on air...The coordinated and integrated development of regional airport group system has been identified as an important research topic in the field of air traffic management in China.However,due to the clear limitation on airspace resources and severe traffic congestion,it is necessary to further study the problem of flight schedule coordination optimization for airport clusters.We take the Beijing-Tianjin-Hebei airport Group as an example and construct an optimization model of flight schedule with the minimum adjustment and delay.The design of the implementation algorithm is proposed.As demonstrated by the simulation results,the flight delay in the Beijing-Tianjin-Hebei multi-airport system is noticeably reduced by applying both the optimization model and the algorithm proposed in this paper.展开更多
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori...Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified.展开更多
It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optima...It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high.展开更多
The artificial immune system,an excellent prototype for developingMachine Learning,is inspired by the function of the powerful natural immune system.As one of the prevalent classifiers,the Dendritic Cell Algorithm(DCA...The artificial immune system,an excellent prototype for developingMachine Learning,is inspired by the function of the powerful natural immune system.As one of the prevalent classifiers,the Dendritic Cell Algorithm(DCA)has been widely used to solve binary problems in the real world.The classification of DCA depends on a data preprocessing procedure to generate input signals,where feature selection and signal categorization are themain work.However,the results of these studies also show that the signal generation of DCA is relatively weak,and all of them utilized a filter strategy to remove unimportant attributes.Ignoring filtered features and applying expertise may not produce an optimal classification result.To overcome these limitations,this study models feature selection and signal categorization into feature grouping problems.This study hybridizes Grouping Genetic Algorithm(GGA)with DCA to propose a novel DCA version,GGA-DCA,for accomplishing feature selection and signal categorization in a search process.The GGA-DCA aims to search for the optimal feature grouping scheme without expertise automatically.In this study,the data coding and operators of GGA are redefined for grouping tasks.The experimental results show that the proposed algorithm has significant advantages over the compared DCA expansion algorithms in terms of signal generation.展开更多
基金the Liaoning Province Nature Fundation Project(2022-MS-291)the National Programme for Foreign Expert Projects(G2022006008L)+2 种基金the Basic Research Projects of Liaoning Provincial Department of Education(LJKMZ20220781,LJKMZ20220783,LJKQZ20222457)King Saud University funded this study through theResearcher Support Program Number(RSPD2023R704)King Saud University,Riyadh,Saudi Arabia.
文摘The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.
基金supported in part by the Central Government Guides Local Science and TechnologyDevelopment Funds(Grant No.YDZJSX2021A038)in part by theNational Natural Science Foundation of China under(Grant No.61806138)in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)(Grant 2021FNA04014).
文摘The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.
基金The National Natural Science Foundation of China(No.51208054)
文摘In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is proposed. The throughput maximum and average queue ratio minimum for the critical route of the intersection group are selected as the optimization objectives of the traffic signal control for the over-saturated condition. The consequences of the efficiency between traffic signal timing plans generated by the proposed algorithm and a commonly utilized signal timing optimization software Synchro are compared in a VISSIM signal control application programming interfaces (SCAPI) simulation environment by using real filed observed traffic data. The simulation results indicate that the signal timing plan generated by the proposed algorithm is more efficient in managing oversaturated flows at intersection groups, and, thus, it has the capability of optimizing signal timing under the over-saturated conditions.
基金the Science and Technology Planning Project of Hunan Province(No.2011TP4016-3)the Construct Program of the Key Discipline(Technology of Computer Application)in Xiangnan University
文摘A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problems.The SGSO adopts an improved sharing strategy which shares information of not only the best member but also the other good members,and uses a simpler search method instead of searching by the head angle.Furthermore,the SGSO increases the percentage of scroungers to accelerate convergence speed.Compared with genetic algorithm(GA),particle swarm optimizer(PSO)and group search optimizer(GSO),SGSO is tested on seven benchmark functions with dimensions 30,100,500 and 1 000.It can be concluded that the SGSO has a remarkably superior performance to GA,PSO and GSO for large scale global optimization.
文摘The coordinated and integrated development of regional airport group system has been identified as an important research topic in the field of air traffic management in China.However,due to the clear limitation on airspace resources and severe traffic congestion,it is necessary to further study the problem of flight schedule coordination optimization for airport clusters.We take the Beijing-Tianjin-Hebei airport Group as an example and construct an optimization model of flight schedule with the minimum adjustment and delay.The design of the implementation algorithm is proposed.As demonstrated by the simulation results,the flight delay in the Beijing-Tianjin-Hebei multi-airport system is noticeably reduced by applying both the optimization model and the algorithm proposed in this paper.
基金supported by the Foundation of the Scientific and Technological Innovation Team of Colleges and Universities in Henan Province(Grant No.181RTSTHN009)the Foundation of the Key Laboratory of Water Environment Simulation and Treatment in Henan Province(Grant No.2017016).
文摘Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified.
基金supported by the National Natural Science Foundation of China(6107901361079014+4 种基金61403198)the National Natural Science Funds and Civil Aviaiton Mutual Funds(U1533128U1233114)the Programs of Natural Science Foundation of China and China Civil Aviation Joint Fund(60939003)the Natural Science Foundation of Jiangsu Province in China(BK2011737)
文摘It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high.
基金NSFC http://www.nsfc.gov.cn/for the support through Grants No.61877045Fundamental Research Project of Shenzhen Science and Technology Program for the support through Grants No.JCYJ2016042815-3956266.
文摘The artificial immune system,an excellent prototype for developingMachine Learning,is inspired by the function of the powerful natural immune system.As one of the prevalent classifiers,the Dendritic Cell Algorithm(DCA)has been widely used to solve binary problems in the real world.The classification of DCA depends on a data preprocessing procedure to generate input signals,where feature selection and signal categorization are themain work.However,the results of these studies also show that the signal generation of DCA is relatively weak,and all of them utilized a filter strategy to remove unimportant attributes.Ignoring filtered features and applying expertise may not produce an optimal classification result.To overcome these limitations,this study models feature selection and signal categorization into feature grouping problems.This study hybridizes Grouping Genetic Algorithm(GGA)with DCA to propose a novel DCA version,GGA-DCA,for accomplishing feature selection and signal categorization in a search process.The GGA-DCA aims to search for the optimal feature grouping scheme without expertise automatically.In this study,the data coding and operators of GGA are redefined for grouping tasks.The experimental results show that the proposed algorithm has significant advantages over the compared DCA expansion algorithms in terms of signal generation.