期刊文献+
共找到501篇文章
< 1 2 26 >
每页显示 20 50 100
Multi-Objective Optimization Algorithm for Grouping Decision Variables Based on Extreme Point Pareto Frontier 被引量:1
1
作者 JunWang Linxi Zhang +4 位作者 Hao Zhang Funan Peng Mohammed A.El-Meligy Mohamed Sharaf Qiang Fu 《Computers, Materials & Continua》 SCIE EI 2024年第4期1281-1299,共19页
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly... The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently. 展开更多
关键词 Multi-objective evolutionary optimization algorithm decision variables grouping extreme point pareto frontier
在线阅读 下载PDF
Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables
2
作者 Liang Chen Jingbo Zhang +2 位作者 Linjie Wu Xingjuan Cai Yubin Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期363-383,共21页
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera... The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage. 展开更多
关键词 Decision variable grouping large-scale multi-objective optimization algorithms weighted overlapping grouping direction-guided evolution
在线阅读 下载PDF
NSGA-Ⅱ based traffic signal control optimization algorithm for over-saturated intersection group 被引量:8
3
作者 李岩 过秀成 +1 位作者 陶思然 杨洁 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期211-216,共6页
In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is prop... In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is proposed. The throughput maximum and average queue ratio minimum for the critical route of the intersection group are selected as the optimization objectives of the traffic signal control for the over-saturated condition. The consequences of the efficiency between traffic signal timing plans generated by the proposed algorithm and a commonly utilized signal timing optimization software Synchro are compared in a VISSIM signal control application programming interfaces (SCAPI) simulation environment by using real filed observed traffic data. The simulation results indicate that the signal timing plan generated by the proposed algorithm is more efficient in managing oversaturated flows at intersection groups, and, thus, it has the capability of optimizing signal timing under the over-saturated conditions. 展开更多
关键词 traffic signal control optimization algorithm intersection group over-saturated status NSGA-H algorithm
在线阅读 下载PDF
Simplified Group Search Optimizer Algorithm for Large Scale Global Optimization 被引量:1
4
作者 张雯雰 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第1期38-43,共6页
A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problem... A simplified group search optimizer algorithm denoted as"SGSO"for large scale global optimization is presented in this paper to obtain a simple algorithm with superior performance on high-dimensional problems.The SGSO adopts an improved sharing strategy which shares information of not only the best member but also the other good members,and uses a simpler search method instead of searching by the head angle.Furthermore,the SGSO increases the percentage of scroungers to accelerate convergence speed.Compared with genetic algorithm(GA),particle swarm optimizer(PSO)and group search optimizer(GSO),SGSO is tested on seven benchmark functions with dimensions 30,100,500 and 1 000.It can be concluded that the SGSO has a remarkably superior performance to GA,PSO and GSO for large scale global optimization. 展开更多
关键词 evolutionary algorithms swarm intelli-gence group search optimizer(PSO) large scale global optimization function optimization
原文传递
Collaboration Optimization of Flight Schedule in Beijing⁃Tianjin⁃Hebei Airport Group 被引量:4
5
作者 GENG Xi HU Minghua 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第6期928-935,共8页
The coordinated and integrated development of regional airport group system has been identified as an important research topic in the field of air traffic management in China.However,due to the clear limitation on air... The coordinated and integrated development of regional airport group system has been identified as an important research topic in the field of air traffic management in China.However,due to the clear limitation on airspace resources and severe traffic congestion,it is necessary to further study the problem of flight schedule coordination optimization for airport clusters.We take the Beijing-Tianjin-Hebei airport Group as an example and construct an optimization model of flight schedule with the minimum adjustment and delay.The design of the implementation algorithm is proposed.As demonstrated by the simulation results,the flight delay in the Beijing-Tianjin-Hebei multi-airport system is noticeably reduced by applying both the optimization model and the algorithm proposed in this paper. 展开更多
关键词 air transport flight schedule airport group system optimization algorithm
在线阅读 下载PDF
Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights 被引量:12
6
作者 Hai-tao Chen Wen-chuan Wang +1 位作者 Xiao-nan Chen Lin Qiu 《Water Science and Engineering》 EI CAS CSCD 2020年第2期136-144,共9页
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori... Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified. 展开更多
关键词 Particle swarm optimization Genetic algorithm Random inertia weight Multi-objective reservoir operation Reservoir group Panjiakou Reservoir
在线阅读 下载PDF
Optimizing combination of aircraft maintenance tasks by adaptive genetic algorithm based on cluster search 被引量:6
7
作者 Huaiyuan Li Hongfu Zuo +3 位作者 Kun Liang Juan Xu Jing Cai Junqiang Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期140-156,共17页
It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optima... It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high. 展开更多
关键词 cluster search genetic algorithm combinatorial optimization multi-part maintenance grouping maintenance.
在线阅读 下载PDF
Dendritic Cell Algorithm with Grouping Genetic Algorithm for Input Signal Generation
8
作者 Dan Zhang Yiwen Liang Hongbin Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2025-2045,共21页
The artificial immune system,an excellent prototype for developingMachine Learning,is inspired by the function of the powerful natural immune system.As one of the prevalent classifiers,the Dendritic Cell Algorithm(DCA... The artificial immune system,an excellent prototype for developingMachine Learning,is inspired by the function of the powerful natural immune system.As one of the prevalent classifiers,the Dendritic Cell Algorithm(DCA)has been widely used to solve binary problems in the real world.The classification of DCA depends on a data preprocessing procedure to generate input signals,where feature selection and signal categorization are themain work.However,the results of these studies also show that the signal generation of DCA is relatively weak,and all of them utilized a filter strategy to remove unimportant attributes.Ignoring filtered features and applying expertise may not produce an optimal classification result.To overcome these limitations,this study models feature selection and signal categorization into feature grouping problems.This study hybridizes Grouping Genetic Algorithm(GGA)with DCA to propose a novel DCA version,GGA-DCA,for accomplishing feature selection and signal categorization in a search process.The GGA-DCA aims to search for the optimal feature grouping scheme without expertise automatically.In this study,the data coding and operators of GGA are redefined for grouping tasks.The experimental results show that the proposed algorithm has significant advantages over the compared DCA expansion algorithms in terms of signal generation. 展开更多
关键词 Dendritic cell algorithm combinatorial optimization grouping problems grouping genetic algorithm
在线阅读 下载PDF
基于多策略改进的金豺优化算法
9
作者 杜晓昕 牛翔慧 +2 位作者 王波 郝田茹 王振飞 《河南师范大学学报(自然科学版)》 北大核心 2025年第4期39-48,I0007,I0008,共12页
金豺优化算法(golden jackal optimization algorithm,GJO)作为一种新型的元启发算法,由于其收敛速度精度不佳,且在探索与开采阶段平衡上存在不足,陷入局部极值等算法弊端均有出现.因此,提出了改进金豺优化算法(IGJO).首先,采用改进型... 金豺优化算法(golden jackal optimization algorithm,GJO)作为一种新型的元启发算法,由于其收敛速度精度不佳,且在探索与开采阶段平衡上存在不足,陷入局部极值等算法弊端均有出现.因此,提出了改进金豺优化算法(IGJO).首先,采用改进型的多值Circle混沌映射,以增进种群多样性及初始解的品质;其次,基于特定的收缩指数函数,将能量方程优化为非线性形式,实现全局与局部搜寻的有效协调;然后,引入基于t-分布的变异策略增强搜索广度,提升全局搜索效能,有效避免局部最优问题;最后,通过调整Levy飞行参数进行细致优化,确立了一个优化值,从而显著提升了算法的收敛速度和精确度.通过9项测试函数的实验验证表明,改进后的IGJO算法在多个方面超越了若干现有的经典或新兴算法. 展开更多
关键词 群智能优化算法 金豺优化算法 多值Circle混沌映射 任意收缩指数函数 自适应t分布突变
在线阅读 下载PDF
1060铝板渐进成形参数的精英群体引导蜂群优化
10
作者 陈建丽 曾德长 《机械设计与制造》 北大核心 2025年第8期186-191,共6页
为了减小1060铝合金板多道次渐进成形制件的最大减薄率和厚度偏差,提出了基于精英群体引导蜂群算法的渐进成形工艺参数优化方法。建立了直臂筒形件单点渐进成形的有限元模型;构造了以减小最大减薄率和厚度偏差为目标的优化模型;选择了... 为了减小1060铝合金板多道次渐进成形制件的最大减薄率和厚度偏差,提出了基于精英群体引导蜂群算法的渐进成形工艺参数优化方法。建立了直臂筒形件单点渐进成形的有限元模型;构造了以减小最大减薄率和厚度偏差为目标的优化模型;选择了对性能参数敏感性较强的工艺参数作为优化对象,基于最优拉丁超立方抽样法在优化空间抽取了采样点,并基于有限元模型获取了相应的性能参数;在蜂群算法中引入了精英群体引导策略,提出了基于精英群体引导蜂群算法的参数优化方法。经验证,精英群体引导蜂群算法搜索的结果优于传统蜂群算法和正交蜂群算法搜索的结果;将精英群体引导蜂群算法的优化结果进行有限元和生产验证,试制件无明显外观缺陷;经测量,试制件最大减薄率、厚度标准差以优化结果为中心进行小范围波动,且明显小于工厂产品的最大减薄率和厚度标准差,验证了精英群体引导蜂群算法在参数优化中的优越性和生产的稳定性。 展开更多
关键词 渐进成形 1060铝合金板 蜂群算法 精英群体 参数优化
在线阅读 下载PDF
考虑转港调度的内河港口群多泊位联合配置策略
11
作者 高攀 黄柳森 赵旭 《交通运输系统工程与信息》 北大核心 2025年第2期328-337,共10页
为缓解内河港口泊位资源供需时空不匹配问题,将单港泊位分配拓展到腹地高度重叠的内河港口群中,通过考虑不同港口之间的转港调度作业,探索多泊位联合配置优化策略。本文以船舶总成本和在港总时间最小化为目标,建立港口群多泊位联合配置... 为缓解内河港口泊位资源供需时空不匹配问题,将单港泊位分配拓展到腹地高度重叠的内河港口群中,通过考虑不同港口之间的转港调度作业,探索多泊位联合配置优化策略。本文以船舶总成本和在港总时间最小化为目标,建立港口群多泊位联合配置优化模型。依据模型特点,设计改进的非支配排序遗传算法求解模型,并探讨调度实施前后的优化效果。以我国某内河流域的一个港口群为例,对配置模型和优化算法进行可行性验证。实验结果显示:实行联合配置策略的船舶总成本和在港总时间比独立配置均有所降低,且当船舶到港规模由20艘增加到80艘时,实施联合配置策略前后的成本和时间的降低比例平均分别提升至24%和40%左右。同时,当允许转港的船舶数量比例从0增加到20%时,船舶总成本和在港总时间的下降幅度较大;比例超过20%后,呈现边际递减效应。因此,需充分考虑转港调度成本,通过设置适当的转港数量阈值,提升港口群运作效率。 展开更多
关键词 水路运输 联合配置策略 非支配排序遗传算法 内河港口群 多目标优化
在线阅读 下载PDF
考虑洪水预报信息的水库群防洪联合优化调度研究与应用
12
作者 任明磊 张琪 +2 位作者 赵丽平 夏志昌 陈智洋 《中国防汛抗旱》 2025年第3期9-14,20,共7页
洪水预报与水库防洪调度是实现流域防洪“四预”(预报、预警、预演、预案)的重要技术手段。以浙江省飞云江流域的珊溪水库、百丈漈水库、赵山渡引水工程为例,分析流域内各水利工程的空间关系和水力联系,建立了分布式新安江模型对流域重... 洪水预报与水库防洪调度是实现流域防洪“四预”(预报、预警、预演、预案)的重要技术手段。以浙江省飞云江流域的珊溪水库、百丈漈水库、赵山渡引水工程为例,分析流域内各水利工程的空间关系和水力联系,建立了分布式新安江模型对流域重要节点进行洪水预报,以此作为水库群防洪联合优化调度模型的输入,并对模型进行求解。结果表明,在防御1617号台风“鲇鱼”期间,考虑洪水预报信息的水库群防洪联合优化调度可进一步发挥水库防洪潜力,下游赵山渡断面削峰效果明显。 展开更多
关键词 洪水预报 防洪调度 水库群 优化算法
在线阅读 下载PDF
基于改进SGO算法优化的SVM网络入侵检测
13
作者 张小萍 李秋兰 《云南师范大学学报(自然科学版)》 2025年第1期49-55,共7页
利用改进社会群体优化(SGO)算法优化支持向量机(SVM)算法的惩罚系数c和核函数g,从而提高网络入侵检测的准确率;同时为了缓解SGO算法存在的随机初始化不均匀、陷入局部最优等问题,在社会群体优化算法的初始化阶段加入佳点集使得初始化种... 利用改进社会群体优化(SGO)算法优化支持向量机(SVM)算法的惩罚系数c和核函数g,从而提高网络入侵检测的准确率;同时为了缓解SGO算法存在的随机初始化不均匀、陷入局部最优等问题,在社会群体优化算法的初始化阶段加入佳点集使得初始化种群更加均匀;在SGO算法的获得阶段加入黄金正弦算法使其跳出局部最优,进而有效地提升SVM分类模型的准确率.利用KDD99数据集进行仿真实验,实验证明提出算法具有检测时间短、准确率较高和误报率低的优势. 展开更多
关键词 社会群体优化算法 支持向量机 入侵检测 KDD99
在线阅读 下载PDF
重载铁路混编群组列车开行方案编制模型与算法 被引量:6
14
作者 卓芩羽 陈维亚 +1 位作者 宋宗莹 于晓泉 《铁道科学与工程学报》 北大核心 2025年第2期569-578,共10页
开行群组列车可以缩短列车追踪运行间隔,是提高重载铁路输送能力和减少货物总在途运输时间的潜在突破口。开行混编群组列车有利于灵活编组列车和适应多样化货物运输需求,但会使列车开行方案的编制问题变得复杂。为了优化求解具有“技术... 开行群组列车可以缩短列车追踪运行间隔,是提高重载铁路输送能力和减少货物总在途运输时间的潜在突破口。开行混编群组列车有利于灵活编组列车和适应多样化货物运输需求,但会使列车开行方案的编制问题变得复杂。为了优化求解具有“技术站始发直达”特征的重载铁路混编群组列车开行方案(包括混编群组列车的列车组群方案、停站方案和运行时刻方案),本文构建了一个多目标优化模型,并设计了一种启发式求解算法。优化模型引入了货运需求重要度作为参考指标,综合考量货物需求量、运到期限、目的站等级及运输距离等因素,以单位时段内目的站货运供需差额运输成本最小和货物总在途运输时间最短作为优化目标。约束条件主要考虑了货运供需匹配关系、货物运到期限、线路天窗时间、群组内单元列车数量限制等现实运输组织条件。考虑该模型为混合整数非线性规划模型,设计了一种模拟退火非支配排序算法(Simulated Annealing for Non-dominated Sorting, SANSA)进行求解。以某重载铁路为背景构建简化算例,计算结果表明:所构建的多目标优化模型与设计的SANSA算法能够有效获得重载铁路混编群组列车的列车组群方案(包括群组数量、组群顺序、组内单元列车数量)、停站方案和运行时刻方案;在满足既定运输需求计划情形下,该求解结果还可用于反馈分析目的站货运需求计划和最晚运到时间设定的合理性,为运输供给方案的优化调整提供参考依据。 展开更多
关键词 重载铁路运输 混编群组列车 开行方案 多目标优化 元启发式算法
在线阅读 下载PDF
基于最优尺度选择与规则提取的访问请求信息异常检测
15
作者 石巍 《系统仿真技术》 2025年第1期56-61,共6页
访问请求信息用户行为序列的选取结果不够典型,导致误报率、漏报率高,可能引发安全事件响应延迟以及潜在的安全漏洞被忽视等情况,对此,设计基于最优尺度选择与规则提取的访问请求信息异常检测方法。从网络系统的用户访问行为数据中获取... 访问请求信息用户行为序列的选取结果不够典型,导致误报率、漏报率高,可能引发安全事件响应延迟以及潜在的安全漏洞被忽视等情况,对此,设计基于最优尺度选择与规则提取的访问请求信息异常检测方法。从网络系统的用户访问行为数据中获取与用户标识对应的初始访问行为序列。首先进行初始访问行为序列数据清洗、date列的格式化以及行为映射编码。然后排序合并,生成用户行为序列。利用多阶窗口分组技术对用户行为序列进行不同窗口阶数的分组,通过秩和检验确定最优窗口阶数。基于最优窗口阶数的访问行为组合序列,计算相关联的访问行为组合频次分布值,利用孤立森林算法检测访问请求信息异常度。测试结果表明,所设计方法在混淆矩阵的各项指标上表现优异,在100个孤立树数目下性能最佳。 展开更多
关键词 最优尺度选择 规则提取 访问请求信息 异常检测 多阶窗口分组技术 孤立森林算法
在线阅读 下载PDF
混沌累积差异增强的小龙虾优化算法 被引量:1
16
作者 李宏宇 钱谦 +3 位作者 潘家文 张晓丽 冯勇 李英娜 《小型微型计算机系统》 北大核心 2025年第7期1606-1615,共10页
小龙虾优化算法(COA)是2023年提出的一种新型群智能优化算法,通过模拟小龙虾行为和温度调控来寻优.然而,COA存在多样性退化、探索能力不足、易陷入局部最优和寻优精度低等缺陷,为了解决这些问题,本研究提出了一种混沌累积差异增强的小... 小龙虾优化算法(COA)是2023年提出的一种新型群智能优化算法,通过模拟小龙虾行为和温度调控来寻优.然而,COA存在多样性退化、探索能力不足、易陷入局部最优和寻优精度低等缺陷,为了解决这些问题,本研究提出了一种混沌累积差异增强的小龙虾优化算法(CE-COA).首先,通过引入Piecewise混沌映射初始化种群的位置,增加种群的多元性;其次,在避暑和竞争洞穴阶段,引入精英洞穴群体以避免算法陷入局部最优,并提升其寻找潜在解的能力;然后,在觅食阶段通过累积差异进食策略,充分考虑个体与食物的维度信息差异,进一步提高算法的寻优精度.在实验分析阶段通过使用CEC2022测试集和CEC2017的部分测试函数进行验证,使用定性分析、Wilcoxon秩和检验和Friedman检验评估算法性能,并在2个工程设计问题和无线传感器网络(WSN)节点覆盖问题上进行了算法的实效性验证.实验结果表明,CE-COA算法均取得了更好的实验效果. 展开更多
关键词 小龙虾优化算法 混沌映射 累积差异 精英群体 无线传感器网络
在线阅读 下载PDF
面向空中战斗管理的协同任务进程管理方法 被引量:1
17
作者 宋祺 左家亮 +3 位作者 吴傲 杨任农 王瑛 李乐言 《航空学报》 北大核心 2025年第15期211-239,共29页
针对大规模空中作战易出现“枪炮一响,计划泡汤”的难题,提出了一种协同任务进程管理方法。首先,引入管理学WBS工作分解结构,将作战整体任务分解为编队行为;其次,围绕计划制定,提出了一种带时间线的双代号群体网络的进程计划表征模型,... 针对大规模空中作战易出现“枪炮一响,计划泡汤”的难题,提出了一种协同任务进程管理方法。首先,引入管理学WBS工作分解结构,将作战整体任务分解为编队行为;其次,围绕计划制定,提出了一种带时间线的双代号群体网络的进程计划表征模型,给出了计划的机器求解算法和人工计划的冲突检测与消解算法;在此基础上,瞄准任务结果与执行过程,建立多目标优化模型,使用NSGA-Ⅱ算法求解帕累托最优计划;然后,基于闭环反馈思想建立了计划实时控制系统,运用带约束的自适应差分进化算法求解控制策略;最后,利用“墨子”推演系统的公开作战想定进行实验验证,共设置无扰动、有扰动无控制、有扰动有控制、扰动超出最大控制范围4个实验。实验结果表明,提出的任务进程管理方法,能够生成无冲突、满足约束的任务进程计划,并且能在最大抗扰动范围内对任务进程进行精确控制,确保任务的顺利完成。 展开更多
关键词 空中战斗管理 协同任务进程管理 双代号群体网络 多目标优化 自适应差分进化算法 抗扰动控制
原文传递
考虑柔性负荷和碳交易机制的微电网运行优化 被引量:1
18
作者 刘立衡 王金平 华山 《热能动力工程》 北大核心 2025年第5期121-130,共10页
针对某微电网运行模型,结合柔性负荷和碳交易机制,建立了考虑运行成本、排放成本、柔性负荷成本和碳交易机制成本的多目标函数。通过不同目标的组合方式,设计了微电网运行的4种方案,仿真优化时采用多种群策略对传统引力搜索算法进行了... 针对某微电网运行模型,结合柔性负荷和碳交易机制,建立了考虑运行成本、排放成本、柔性负荷成本和碳交易机制成本的多目标函数。通过不同目标的组合方式,设计了微电网运行的4种方案,仿真优化时采用多种群策略对传统引力搜索算法进行了改进。数值仿真结果表明:多种群引力搜索算法的优化结果明显优于遗传算法、粒子群算法和狼群算法等经典方法,经济成本降低约6.5%;对4种方案的优化结果的比较也说明,在微电网系统中引入柔性负荷和碳交易机制的方案4,比未引入的方案降低微电网运行的经济成本约2.7%。 展开更多
关键词 微电网 调度优化 柔性负荷 碳交易 多种群引力搜素算法
原文传递
基于改进PSO-GWO算法的渠系优化配水模型研究 被引量:1
19
作者 姚成宝 岳春芳 +1 位作者 张胜江 郑秋丽 《人民黄河》 北大核心 2025年第1期128-133,共6页
为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最... 为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最优轮灌编组、配水流量和灌水时间等重要参数,得出渠系渗漏损失量和算法迭代次数,并与粒子群算法、灰狼算法的求解结果进行对比。改进模型使灌水时间缩短了0.62 d,支斗两级渠系水利用系数提高了0.168,改进PSO-GWO算法迭代次数为3次、渠系渗漏总量为16.69万m^(3),优于传统算法的配水结果。实例应用情况表明,改进算法具有更强的寻优能力和收敛性,并且模型在满足高效配水的同时,减少了闸门启闭次数,实现了集中调控,配水模式便捷,应用价值较高。 展开更多
关键词 渠系配水 渗漏损失 轮灌编组 改进PSO-GWO算法 粒子群算法 灰狼算法
在线阅读 下载PDF
基于模型预测控制的河湖库群优化调度
20
作者 白玙 陈磊 +2 位作者 邵知宇 马海元 柴宏祥 《中国给水排水》 北大核心 2025年第15期156-162,共7页
实时优化调度在基于河网和湖库群的城市排水系统安全管理中具有至关重要的作用,但现有研究忽略了动态变化环境下河网和湖库群优化调度对整个系统河道泛洪风险的影响。为此,采用模型预测控制与雨洪管理模型(SWMM)耦合的策略,构建了一个... 实时优化调度在基于河网和湖库群的城市排水系统安全管理中具有至关重要的作用,但现有研究忽略了动态变化环境下河网和湖库群优化调度对整个系统河道泛洪风险的影响。为此,采用模型预测控制与雨洪管理模型(SWMM)耦合的策略,构建了一个旨在最小化河道总泛洪量的河网和湖库群实时优化调度方法。以重庆市某片区为例,对比了4种城市开发水平场景下的河道泛洪风险,涵盖5种不同重现期降雨场景。结果表明,上游建设湖库和优化调度均是减轻河道泛洪风险的重要手段。相比上游未建设湖库的场景1和场景2,上游建设湖库的场景3和场景4的河道总泛洪量显著降低,场景3相比场景1降低了73.48%~100%、场景4相比场景2降低了65.70%~100%。上游建设湖库后,优化调度可进一步降低河道总泛洪量,场景3相比场景1降低了18.64%~100%、场景4相比场景2降低了18.45%~100%。 展开更多
关键词 河湖库群 优化调度 模型预测控制 雨洪管理模型(SWMM) 遗传算法
原文传递
上一页 1 2 26 下一页 到第
使用帮助 返回顶部