期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Seismic response evaluation of base-isolated reinforced concrete buildings under bidirectional excitation 被引量:9
1
作者 Satish Bhagat Anil C Wijeyewickrema 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第2期365-382,共18页
This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. ... This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER- level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered. 展开更多
关键词 Keywords: base isolation bidirectional excitation bounding analysis far-fault ground motion near-fault groundmotion nonlinear analysis
在线阅读 下载PDF
An investigation of the seismic behavior of a deck-type reinforced concrete arch bridge 被引量:4
2
作者 Emadoddin Majdabadi Farahani Shahrokh Maalek 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第3期609-625,共17页
This paper attempts to explore potential benefits of form in a deck-type reinforced concrete(RC) arch bridge in connection with its overall seismic behavior and performance. Through a detailed three-dimensional fini... This paper attempts to explore potential benefits of form in a deck-type reinforced concrete(RC) arch bridge in connection with its overall seismic behavior and performance. Through a detailed three-dimensional finite element modeling and analysis of an actual existing deck-type RC arch bridge, some useful quantitative information have been derived that may serve for a better understanding of the seismic behavior of such arch bridges. A series of the nonlinear dynamic analyses has been carried out under the action of seven different time histories of ground motion scaled to the AASHTO 2012 response spectrum. The concept of demand to capacity ratios has been employed to provide an initial estimation of the seismic performance of the bridge members. As a consequence of the structural form, a particular type of irregularity is introduced due to variable heights of columns transferring the deck loads to the main arch. Hence, a particular attention has been paid to the internal force/moment distributions within the short, medium, and long columns as well as along the main arch. A study of the effects of the vertical component of ground motion has demonstrated the need for the inclusion of these effects in the analysis of such bridges. 展开更多
关键词 deck-type RC arch bridge seismic response nonlinear time history analysis vertical component of groundmotion
在线阅读 下载PDF
Preliminary results of strong ground motion simulation for the Lushan earthquake of 20 April 2013,China 被引量:3
3
作者 Gengshang Zhu Zhenguo Zhang +2 位作者 Jian Wen Wei Zhang Xiaofei Chen 《Earthquake Science》 2013年第3期191-197,共7页
The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic haz- ar... The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic haz- ard, we simulated the strong ground motions from a rep- resentative kinematic source model by Zhang et al. (Chin J Geophys 56(4):1408-1411, 2013) for this earthquake. To include the topographic effects, we used the curved grids finite difference method by Zhang and Chen (Geophys J Int 167(1):337-353, 2006), Zhang et al. (Geophys J Int 190(1):358-378, 2012) to implement the simulations. Our results indicated that the majority of seismic energy con- centrated in the epicentral area and the vicinal Sichuan Basin, causing the XI and VII degree intensity. Due to the strong topographic effects of the mountain, the seismic intensity in the border area across the northeastern of Boxing County to the Lushan County also reached IX degree. Moreover, the strong influence of topography caused the amplifications of ground shaking at the moun- tain ridge, which is easy to cause landslides. These results are quite similar to those observed in the Wenchuan earthquake of 2008 occurred also in a strong topographic mountain area. 展开更多
关键词 Lushan earthquake Strong groundmotion Topographic effects Seismic intensity
在线阅读 下载PDF
Use of probabilistic and deterministic measures to identify unfavorable earthquake records 被引量:2
4
作者 Abbas MOUSTAFA Izuru TAKEWAKI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第5期619-634,共16页
This study introduces measures to identify resonant (concentration of energy in a single or a few frequencies) or unfavorable earthquake ground motions. Probabilistic measures based on the entropy rate and the geometr... This study introduces measures to identify resonant (concentration of energy in a single or a few frequencies) or unfavorable earthquake ground motions. Probabilistic measures based on the entropy rate and the geometric properties of the power spectral density function (PSDF) of the ground acceleration are developed first. Subsequently, deterministic measures for the frequency content of the ground acceleration are also developed. These measures are then used for identifying resonance and criticality in stochastic earthquake models and 110 acceleration records measured at rock, stiff, medium and soft soil sites. The unfavorable earthquake record for a given structure is defined as the record having a narrow frequency content and dominant frequency close to the structure fundamental natural frequency. Accordingly, the measures developed in this study may provide a basis for selecting records that are capable of producing the highest structural response. Numerical verifications are provided on damage caused to structures by identified resonant records. 展开更多
关键词 Entropy rate Dispersion index Power spectral density function (PSDF) Frequency content Unfavorable groundmotion Resonant acceleration Critical accelerogram Energy Damage index
原文传递
Strong ground motion simulation for the 2013 Lushan M_W6.6 earthquake, Sichuan, China, based on the inverted and synthetic slip models 被引量:1
5
作者 Wenhao Shen Qiu Zhong Baoping Shi 《Earthquake Science》 2014年第4期377-389,共13页
It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip ... It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip distribution on the main fault play a fundamental role to control strong ground motion pattern. A large amount of works have also suggested that variable slip models inverted from longer period ground motion recordings are relevant for the prediction of higher frequency ground motions. Zhang et al. (Chin J Geophys 56:1412-1417, 2013) and Wang et al. (Chin J Geophys 56:1408-1411,2013) published their source inversions for the fault rupturing process soon after the April 20, 2013 Lushan earthquake in Sichuan, China. In this study, first, we synthesize two forward source slip models: the value of maximum slip, fault dimension, size, and dimension of major asperities, and comer wave number obtained from Wang's model is adopted to constrain the gen- eration of k-2 model and crack model. Next, both inverted and synthetic slip models are employed to simulate the ground motions for the Lushan earthquake based on the stochastic finite-fault method. In addition, for a comparison purpose, a stochastic slip model and another k-2 model (k 2 model II) with 2 times value of comer wave number of the original k-2 model (k 2 model I) are also employed for simulation for Lushan event. The simulated results characterized by Modified Mer- calli Intensity (MMI) show that the source slip models based on the inverted and synthetic slip distributions could capture many basic features associated with the ground motion patterns. Moreover, the simulated MMI distributions reflect the rupture directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulated MMI bystochastic slip model and k 2 model II is apparently higher than observed intensity. By contrast, our simulation results show that the higher frequency ground motion is sensitive to the degree of slip roughness; therefore, we suggest that, for realistic ground- motion simulations due to future earthquake, it is imperative to properly estimate the slip roughness distribution. 展开更多
关键词 Stochastic finite-fault model Strong groundmotion -2013 Lushan Mw6.6 earthquake Corner wavenumber k -2 model Crack model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部