Space target imaging simulation technology is an important tool for space target detection and identification,with advantages that include high flexibility and low cost.However,existing space target imaging simulation...Space target imaging simulation technology is an important tool for space target detection and identification,with advantages that include high flexibility and low cost.However,existing space target imaging simulation technologies are mostly based on target magnitudes for simulations,making it difficult to meet image simulation requirements for different signal-to-noise ratio(SNR)needs.Therefore,design of a simulation method that generates target image sequences with various SNRs based on the optical detection system parameters will be important for faint space target detection research.Addressing the SNR calculation issue in optical observation systems,this paper proposes a ground-based detection image SNR calculation method using the optical system parameters.This method calculates the SNR of an observed image precisely using radiative transfer theory,the optical system parameters,and the observation environment parameters.An SNR-based target sequence image simulation method for ground-based detection scenarios is proposed.This method calculates the imaging SNR using the optical system parameters and establishes a model for conversion between the target’s apparent magnitude and image grayscale values,thereby enabling generation of target sequence simulation images with corresponding SNRs for different system parameters.Experiments show that the SNR obtained using this calculation method has an average calculation error of<1 dB when compared with the theoretical SNR of the actual optical system.Additionally,the simulation images generated by the imaging simulation method show high consistency with real images,which meets the requirements of faint space target detection algorithm research and provides reliable data support for development of related technologies.展开更多
Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthqu...Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes.展开更多
This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenari...This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenarios involving Normal,Platykurtic and Skewed distributions over different sample sizes and standard deviation values.In the study,standard deviation ratios were set as 2,3,4,1/2,1/3 and 1/4 and power comparisons were made between small and large sample sizes.For equal sample sizes,small sample sizes of 5,8,10,12,16 and 20 and large sample sizes of 25,50,75 and 100 were used.For different sample sizes,the combinations of(4,16),(8,16),(10,20),(16,4),(16,8)and(20,10)small sample sizes and(10,30),(30,10),(50,75),(50,100),(75,50),(75,100),(100,50)and(100,75)large sample sizes were examined in detail.According to the findings,the power analysis under variance heterogeneity conditions shows that the Siegel-Tukey test has a higher statistical power than the other nonparametric Savage test at small and large sample sizes.In particular,the Siegel-Tukey test was reported to offer higher precision and power under variance heterogeneity,regardless of having equal or different sample sizes.展开更多
A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response anal...A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.展开更多
Modeling technology has been introduced into software testing field.However,how to carry through the testing modeling effectively is still a difficulty.Based on combination of simulation modeling technology and embedd...Modeling technology has been introduced into software testing field.However,how to carry through the testing modeling effectively is still a difficulty.Based on combination of simulation modeling technology and embedded real-time software testing method,the process of simulation testing modeling is studied first.And then,the supporting environment of simulation testing modeling is put forward.Furthermore,an approach of embedded real-time software simulation testing modeling including modeling of cross-linked equipments of system under testing(SUT),test case,testing scheduling,and testing system service is brought forward.Finally,the formalized description and execution system of testing models are given,with which we can realize real-time,closed loop,mad automated system testing for embedded real-time software.展开更多
A global planning algorithm for intelligent vehicles is designed based on the A* algorithm, which provides intelligent vehicles with a global path towards their destinations. A distributed real-time multiple vehicle c...A global planning algorithm for intelligent vehicles is designed based on the A* algorithm, which provides intelligent vehicles with a global path towards their destinations. A distributed real-time multiple vehicle collision avoidance(MVCA)algorithm is proposed by extending the reciprocal n-body collision avoidance method. MVCA enables the intelligent vehicles to choose their destinations and control inputs independently,without needing to negotiate with each other or with the coordinator. Compared to the centralized trajectory-planning algorithm, MVCA reduces computation costs and greatly improves the robustness of the system. Because the destination of each intelligent vehicle can be regarded as private, which can be protected by MVCA, at the same time MVCA can provide a real-time trajectory planning for intelligent vehicles. Therefore,MVCA can better improve the safety of intelligent vehicles. The simulation was conducted in MATLAB, including crossroads scene simulation and circular exchange position simulation. The results show that MVCA behaves safely and reliably. The effects of latency and packet loss on MVCA are also statistically investigated through theoretically formulating broadcasting process based on one-dimensional Markov chain. The results uncover that the tolerant delay should not exceed the half of deciding cycle of trajectory planning, and shortening the sending interval could alleviate the negative effects caused by the packet loss to an extent. The cases of short delay(< 100100 ms) and low packet loss(< 5%) can bring little influence to those trajectory planning algorithms that only depend on V2 V to sense the context, but the unpredictable collision may occur if the delay and packet loss are further worsened. The MVCA was also tested by a real intelligent vehicle, the test results prove the operability of MVCA.展开更多
A computer simulation technique for ultrasonic propagation is utilized for the simulation of ultrasonic nondestructive testing (NDT). In this paper, one goal of the simulation is to compute ultrasonic field radiated b...A computer simulation technique for ultrasonic propagation is utilized for the simulation of ultrasonic nondestructive testing (NDT). In this paper, one goal of the simulation is to compute ultrasonic field radiated by arbitrary transducers into pieces under examination. The other simulates a testing experiment. The simulation approach is based on the model for the computation of the ultrasonic field in isotropic media radiated from actual NDT transducers. After the field is known, remaining to be modeled is the interaction between this field and the scatters (defect) and the echo structure. The model of beam-defect interaction is based on the Kirchhoff’s diffraction approximations theory applied to elastodynamics. We assumed that the incident wave fronts on the defect are plane in the case of a focused immersed transducer and material is isotropic and homogeneous. The simulating results demonstrate that the model in ultrasonic NDT of welds is practical in further research and useful in optimizing testi展开更多
Experimental data analysis and simulation calculations were performed in order to evaluate the cross-talk rejection performance of a typical neutron detection array. For very closely packed scintillation bars, the CT ...Experimental data analysis and simulation calculations were performed in order to evaluate the cross-talk rejection performance of a typical neutron detection array. For very closely packed scintillation bars, the CT rejection may rely on the position relation between the two signals. The criteria |△x|≤ 15 cm and |△y|≤12 cm are currently proposed for a rejection rate higher than 90%. For signals coming from distanced bars, the energy conservation relationship can be applied to reject the CT events with a similar performance. In both cases the results of simulation agree very well with the experimental data, assuring their applicability to other detection systems and physics problems.展开更多
Introduction: This work investigates whether to conduct a medical study from the point of view of the expected net benefit taking into account statistical power, time and cost. The hypothesis of this paper is that the...Introduction: This work investigates whether to conduct a medical study from the point of view of the expected net benefit taking into account statistical power, time and cost. The hypothesis of this paper is that the expected net benefit is equal to zero. Methods: Information were obtained from a pilot medical study that investigates the effects of two diagnostic modalities, magnetic resonance imaging (MRI) and computerized axial tomography scanner (CT), on patients with acute stroke. Statistical procedure was applied for planning and contrasting equivalence, non-inferiority and inequality hypotheses of the study for the effectiveness, health benefits and costs. A statistical simulation model was applied to test the hypothesis that conducting the study would or not result in overall net benefits. If the null hypothesis not rejected, no benefits would occurred and therefore the two arms-patterns of diagnostic and treatment are of equal net benefits. If the null hypothesis is rejected, net benefits would occur if patients are diagnosed with the more favourable diagnostic modality. Results: For any hypothesis design, the expected net benefits are in the range of 366 to 1796 per patient at 80% of statistical power if conducting the study. The power depends on the monetary value available for a unit of health improvement. Conclusion: The statistical simulations suggest that diagnosing patients with CT will provide more favourable health outcomes showing statistically significant expected net benefits in comparison with MRI.展开更多
The non-destructive testing(NDT)of debonding in stainless steel composites plate(SSCP)is performed by infrared thermography,finite element analysis(FEA)software ANSYS is taken as the simulative tool,and 2D simulative ...The non-destructive testing(NDT)of debonding in stainless steel composites plate(SSCP)is performed by infrared thermography,finite element analysis(FEA)software ANSYS is taken as the simulative tool,and 2D simulative model has been set up to investigate effect of the thickness of coating and/or substrate on the detectibility of debonging in SSCPs.Two parameters,namely the maximum defect temperature difference and defect appearing index,are defined to evaluate the detectivity of defects,and their computational methods and formulas are given respectively.The preliminary changing tendency of the maximum defect temperature difference and defect appearing index with the thickness of coating and/or substrate is found by numerical simulation.展开更多
The identification of the critical infrastructure has shown that the build civil engineering infrastructure is almost involved everywhere, even with the IT-infrastructure. Therefore, the passive safety of structures i...The identification of the critical infrastructure has shown that the build civil engineering infrastructure is almost involved everywhere, even with the IT-infrastructure. Therefore, the passive safety of structures is demanded. Security associations have analysed that most assaults came along with explosion and impact scenarios, which amount in 80% of assaults. Consequently, these are the extraordinary loads the structures have to be planned and designed for. To carry out such an engineering job, the engineer has to be educated in multiple disciplines as physics, material science , continuum mechanics, numerical mechanics, testing, structural engineering and related specific fields as wave propagation etc. In this paper we will concentrate on the subjects of numerical simulation and testing.展开更多
Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make u...Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.展开更多
As conducting an impact hammer testing during experimental modal analysis,the multiple impact phenomenon must be avoided.It is generally recognized that the multiple impact phenomenon is induced by the tester’s impro...As conducting an impact hammer testing during experimental modal analysis,the multiple impact phenomenon must be avoided.It is generally recognized that the multiple impact phenomenon is induced by the tester’s improper operation and can be avoided through more careful operation.This study theoretically and numerically investigates the whole process of the dynamical interaction between the hammer tip and the impacted structure and discovers the intrinsically physical mechanism of the multiple impact phenomenon.The determination of the interacting process comes down to solve two sets of governing differential equations alternately,and the effectiveness of the theoretical analysis is validated by numerical simulations.Four dimensionless parameters governing the interacting process are recognized in the theoretical framework.The critical stiffness ratio for a given impacted location and the critical impacted location for a given stiffness ratio are analytically determined.These results can guide impact hammer testing to avoid the occurrence of multiple impact by suggesting the hammer tip and impacted locations.展开更多
This study presents a decision making process in three steps of knowledge management for test organization using process simulation and financial analysis. First, project cost assessment of test knowledge management p...This study presents a decision making process in three steps of knowledge management for test organization using process simulation and financial analysis. First, project cost assessment of test knowledge management process subjects to different project duration and number of staffs. Two knowledge management simulation models representing experienced personnel with knowledge sharing and inexperienced personnel with internal training respectively are employed to contrast test personnel capability. Second, performance evaluation of software testing process by different personnel capability is conducted to simulate system test using three project metrics, namely, duration, effort cost, and quality. Third, a comparative financial analysis is prepared to determine the best solution by return on investment, payback period, and benefit cost ratio. The results from three stages of finding are discussed to arrive at the final scenario. We provide a case study evaluating how software testing industry needs to build effective test organization with high quality personnel for sustainable development and improvement.展开更多
Ultrasonic testing is a very important non-destructive method for testing components for safety of nuclear power plants and other security and delicate parts in other industries. Nowadays, thanks to the development of...Ultrasonic testing is a very important non-destructive method for testing components for safety of nuclear power plants and other security and delicate parts in other industries. Nowadays, thanks to the development of computer technology, it is possible to simulate processes which occur during ultrasonic testing. That is why numerical simulations are becoming an integral part of non-destructive testing. Simulations are used to determine parameters of ultrasonic examination, especially parameters of probes and scan plan and also in the analysis of results. They are used in such cases, when it is necessary to verify applicability of probes and methods. This verification could be provided on the weld and test block which are not manufactured. It could be also provided on defects, which are not manufactured in test block, but their presence is possible in given weld joint. Simulations are very useful for verifying the propagation of ultrasonic signal in given area (e.g. weld area). If movement of probe is limited, possibility of whole volume scan should be verified.展开更多
The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom...The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom and the micro vibration test bed. The result of stimulational experiment indicates that the isolation of vibration of this system is satisfactory. The design method of vibration can be used as the reference to ultra precision machine tool, super micro orientation machanism and so on.展开更多
This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke ...This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke mooring system (SYMS) in extremely shallow water. The scope of the model test and the virtual simulation covers various installation stages including a series of positioning trials, positioning keeping and temporary mooring to the pre-installed SYMS mooring tower, pendulum mating, and yoke ballasting to storm-safe. The model test is to accurately verify bollard pull capacity to keep the FPSO in position and assess motion responses and mooring loads for the FPSO and installation vessels during various installation stages. The virtual simulation is to provide a virtual-reality environment, thus realistically replicating the hookup operation at the Simulation Test Center (STC) facility and identifying any deficiencies in key installation personnel, execution plan, or operation procedures. The methodologies of the model test and the virtual simulation addressed here can be easily extended to the deepwater applications such as positioning and installation operations of various floating systems.展开更多
Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the a...Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the aircraft is being tested, the specimen's safety mainly depends on monitoring and understanding the testing data by way of evaluating the coherence with the digital simulation data synchyononsly. The test digital simulation can aid realizing above requirements and improving the test efficiency significantly during test scheme design stage or testing stage respectively. The key technologies and the solving methods of test digital simulation are presented and the application example is given.展开更多
The present study focuses on the breaching process and failure of barrier dams due to overtopping. In this work, a series of centrifugal model tests is presented to examine the failure mechanisms of landslide dams. Ba...The present study focuses on the breaching process and failure of barrier dams due to overtopping. In this work, a series of centrifugal model tests is presented to examine the failure mechanisms of landslide dams. Based on the experimental results, failure process and mechanism of barrier dam due to overtopping are analyzed and further verified by simulating the experimental overtopping failure process. The results indicate that the barrier dam will develop during the entire process of overtopping in the width direction, whereas the breach will cease to develop at an early stage in the depth direction because of the large particles that accumulate on the downstream slope. Moreover, headcut erosion can be clearly observed in the first two stages of overtopping, and coarsening on the downstream slope occurs in the last stage of overtopping. Thus, the bottom part of the barrier dam can survive after dam breaching and full dam failure becomes relatively rare for a barrier dam. Furthermore, the remaining breach would be smaller than that of a homogeneous cohesive dam under the same conditions.展开更多
Both theoretical and field observations were examined to study the close relationship between soil degeneration and the evolution of grassland vegetation. A general n-species model of equal competition under different...Both theoretical and field observations were examined to study the close relationship between soil degeneration and the evolution of grassland vegetation. A general n-species model of equal competition under different degrees of soil degradation was applied to field data in order to probe the dynamic processes and mechanisms of vegetation evolution due to the effects of the soil's ecological deterioration on grassland vegetation. Comparisons were made between the theoretical results and the practical surveys with satisfactory results.展开更多
基金supported by Open Fund of National Key Laboratory of Deep Space Exploration(NKDSEL2024014)by Civil Aerospace Pre-research Project of State Administration of Science,Technology and Industry for National Defence,PRC(D040103).
文摘Space target imaging simulation technology is an important tool for space target detection and identification,with advantages that include high flexibility and low cost.However,existing space target imaging simulation technologies are mostly based on target magnitudes for simulations,making it difficult to meet image simulation requirements for different signal-to-noise ratio(SNR)needs.Therefore,design of a simulation method that generates target image sequences with various SNRs based on the optical detection system parameters will be important for faint space target detection research.Addressing the SNR calculation issue in optical observation systems,this paper proposes a ground-based detection image SNR calculation method using the optical system parameters.This method calculates the SNR of an observed image precisely using radiative transfer theory,the optical system parameters,and the observation environment parameters.An SNR-based target sequence image simulation method for ground-based detection scenarios is proposed.This method calculates the imaging SNR using the optical system parameters and establishes a model for conversion between the target’s apparent magnitude and image grayscale values,thereby enabling generation of target sequence simulation images with corresponding SNRs for different system parameters.Experiments show that the SNR obtained using this calculation method has an average calculation error of<1 dB when compared with the theoretical SNR of the actual optical system.Additionally,the simulation images generated by the imaging simulation method show high consistency with real images,which meets the requirements of faint space target detection algorithm research and provides reliable data support for development of related technologies.
基金supported by the National Natural Science Foundation of China (Grant No.52108361)the Sichuan Science and Technology Program of China (Grant No.2023YFS0436)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (Grant No.SKLGP2022Z015).
文摘Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes.
文摘This study presents the results of a Monte Carlo simulation to compare the statistical power of Siegel-Tukey and Savage tests.The main purpose of the study is to evaluate the statistical power of both tests in scenarios involving Normal,Platykurtic and Skewed distributions over different sample sizes and standard deviation values.In the study,standard deviation ratios were set as 2,3,4,1/2,1/3 and 1/4 and power comparisons were made between small and large sample sizes.For equal sample sizes,small sample sizes of 5,8,10,12,16 and 20 and large sample sizes of 25,50,75 and 100 were used.For different sample sizes,the combinations of(4,16),(8,16),(10,20),(16,4),(16,8)and(20,10)small sample sizes and(10,30),(30,10),(50,75),(50,100),(75,50),(75,100),(100,50)and(100,75)large sample sizes were examined in detail.According to the findings,the power analysis under variance heterogeneity conditions shows that the Siegel-Tukey test has a higher statistical power than the other nonparametric Savage test at small and large sample sizes.In particular,the Siegel-Tukey test was reported to offer higher precision and power under variance heterogeneity,regardless of having equal or different sample sizes.
基金National Natural Science Foundation under Grant Nos.51179093,91215301 and 41274106the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20130002110032Tsinghua University Initiative Scientific Research Program under Grant No.20131089285
文摘A solution scheme is proposed in this paper for an existing RTDHT system to simulate large-scale finite element (FE) numerical substructures. The analysis of the FE numerical substructure is split into response analysis and signal generation tasks, and executed in two different target computers in real-time. One target computer implements the response analysis task, wherein a large time-step is used to solve the FE substructure, and another target computer implements the signal generation task, wherein an interpolation program is used to generate control signals in a small time-step to meet the input demand of the controller. By using this strategy, the scale of the FE numerical substructure simulation may be increased significantly. The proposed scheme is initially verified by two FE numerical substructure models with 98 and 1240 degrees of freedom (DOFs). Thereafter, RTDHTs of a single frame-foundation structure are implemented where the foundation, considered as the numerical substructure, is simulated by the FE model with 1240 DOFs. Good agreements between the results of the RTDHT and those from the FE analysis in ABAQUS are obtained.
文摘Modeling technology has been introduced into software testing field.However,how to carry through the testing modeling effectively is still a difficulty.Based on combination of simulation modeling technology and embedded real-time software testing method,the process of simulation testing modeling is studied first.And then,the supporting environment of simulation testing modeling is put forward.Furthermore,an approach of embedded real-time software simulation testing modeling including modeling of cross-linked equipments of system under testing(SUT),test case,testing scheduling,and testing system service is brought forward.Finally,the formalized description and execution system of testing models are given,with which we can realize real-time,closed loop,mad automated system testing for embedded real-time software.
基金supported by the National Natural Science Foundation of China(61572229,6171101066)the Key Scientific and Technological Projects for Jilin Province Development Plan(20170204074GX,20180201068GX)Jilin Provincial International Cooperation Foundation(20180414015GH)。
文摘A global planning algorithm for intelligent vehicles is designed based on the A* algorithm, which provides intelligent vehicles with a global path towards their destinations. A distributed real-time multiple vehicle collision avoidance(MVCA)algorithm is proposed by extending the reciprocal n-body collision avoidance method. MVCA enables the intelligent vehicles to choose their destinations and control inputs independently,without needing to negotiate with each other or with the coordinator. Compared to the centralized trajectory-planning algorithm, MVCA reduces computation costs and greatly improves the robustness of the system. Because the destination of each intelligent vehicle can be regarded as private, which can be protected by MVCA, at the same time MVCA can provide a real-time trajectory planning for intelligent vehicles. Therefore,MVCA can better improve the safety of intelligent vehicles. The simulation was conducted in MATLAB, including crossroads scene simulation and circular exchange position simulation. The results show that MVCA behaves safely and reliably. The effects of latency and packet loss on MVCA are also statistically investigated through theoretically formulating broadcasting process based on one-dimensional Markov chain. The results uncover that the tolerant delay should not exceed the half of deciding cycle of trajectory planning, and shortening the sending interval could alleviate the negative effects caused by the packet loss to an extent. The cases of short delay(< 100100 ms) and low packet loss(< 5%) can bring little influence to those trajectory planning algorithms that only depend on V2 V to sense the context, but the unpredictable collision may occur if the delay and packet loss are further worsened. The MVCA was also tested by a real intelligent vehicle, the test results prove the operability of MVCA.
基金supported by the Doctoral Degree Fund of Xi’an Jiaotong University
文摘A computer simulation technique for ultrasonic propagation is utilized for the simulation of ultrasonic nondestructive testing (NDT). In this paper, one goal of the simulation is to compute ultrasonic field radiated by arbitrary transducers into pieces under examination. The other simulates a testing experiment. The simulation approach is based on the model for the computation of the ultrasonic field in isotropic media radiated from actual NDT transducers. After the field is known, remaining to be modeled is the interaction between this field and the scatters (defect) and the echo structure. The model of beam-defect interaction is based on the Kirchhoff’s diffraction approximations theory applied to elastodynamics. We assumed that the incident wave fronts on the defect are plane in the case of a focused immersed transducer and material is isotropic and homogeneous. The simulating results demonstrate that the model in ultrasonic NDT of welds is practical in further research and useful in optimizing testi
基金supported by the National Basic Research Program of China (No. 2007CB815002)the Fundamental Research Funds for the Central Universities of China (HEUCF101501)Harbin Engineering University of China (002150260713)
文摘Experimental data analysis and simulation calculations were performed in order to evaluate the cross-talk rejection performance of a typical neutron detection array. For very closely packed scintillation bars, the CT rejection may rely on the position relation between the two signals. The criteria |△x|≤ 15 cm and |△y|≤12 cm are currently proposed for a rejection rate higher than 90%. For signals coming from distanced bars, the energy conservation relationship can be applied to reject the CT events with a similar performance. In both cases the results of simulation agree very well with the experimental data, assuring their applicability to other detection systems and physics problems.
文摘Introduction: This work investigates whether to conduct a medical study from the point of view of the expected net benefit taking into account statistical power, time and cost. The hypothesis of this paper is that the expected net benefit is equal to zero. Methods: Information were obtained from a pilot medical study that investigates the effects of two diagnostic modalities, magnetic resonance imaging (MRI) and computerized axial tomography scanner (CT), on patients with acute stroke. Statistical procedure was applied for planning and contrasting equivalence, non-inferiority and inequality hypotheses of the study for the effectiveness, health benefits and costs. A statistical simulation model was applied to test the hypothesis that conducting the study would or not result in overall net benefits. If the null hypothesis not rejected, no benefits would occurred and therefore the two arms-patterns of diagnostic and treatment are of equal net benefits. If the null hypothesis is rejected, net benefits would occur if patients are diagnosed with the more favourable diagnostic modality. Results: For any hypothesis design, the expected net benefits are in the range of 366 to 1796 per patient at 80% of statistical power if conducting the study. The power depends on the monetary value available for a unit of health improvement. Conclusion: The statistical simulations suggest that diagnosing patients with CT will provide more favourable health outcomes showing statistically significant expected net benefits in comparison with MRI.
基金the National Natural Science Foundation of China(No.51075388)the Fundamental Research Funds for the Central Universities (No.2009KJ05)
文摘The non-destructive testing(NDT)of debonding in stainless steel composites plate(SSCP)is performed by infrared thermography,finite element analysis(FEA)software ANSYS is taken as the simulative tool,and 2D simulative model has been set up to investigate effect of the thickness of coating and/or substrate on the detectibility of debonging in SSCPs.Two parameters,namely the maximum defect temperature difference and defect appearing index,are defined to evaluate the detectivity of defects,and their computational methods and formulas are given respectively.The preliminary changing tendency of the maximum defect temperature difference and defect appearing index with the thickness of coating and/or substrate is found by numerical simulation.
文摘The identification of the critical infrastructure has shown that the build civil engineering infrastructure is almost involved everywhere, even with the IT-infrastructure. Therefore, the passive safety of structures is demanded. Security associations have analysed that most assaults came along with explosion and impact scenarios, which amount in 80% of assaults. Consequently, these are the extraordinary loads the structures have to be planned and designed for. To carry out such an engineering job, the engineer has to be educated in multiple disciplines as physics, material science , continuum mechanics, numerical mechanics, testing, structural engineering and related specific fields as wave propagation etc. In this paper we will concentrate on the subjects of numerical simulation and testing.
文摘Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.
基金the National Natural Science Foundation of China under Grant Nos.11872328,11532011,and 11621062.
文摘As conducting an impact hammer testing during experimental modal analysis,the multiple impact phenomenon must be avoided.It is generally recognized that the multiple impact phenomenon is induced by the tester’s improper operation and can be avoided through more careful operation.This study theoretically and numerically investigates the whole process of the dynamical interaction between the hammer tip and the impacted structure and discovers the intrinsically physical mechanism of the multiple impact phenomenon.The determination of the interacting process comes down to solve two sets of governing differential equations alternately,and the effectiveness of the theoretical analysis is validated by numerical simulations.Four dimensionless parameters governing the interacting process are recognized in the theoretical framework.The critical stiffness ratio for a given impacted location and the critical impacted location for a given stiffness ratio are analytically determined.These results can guide impact hammer testing to avoid the occurrence of multiple impact by suggesting the hammer tip and impacted locations.
文摘This study presents a decision making process in three steps of knowledge management for test organization using process simulation and financial analysis. First, project cost assessment of test knowledge management process subjects to different project duration and number of staffs. Two knowledge management simulation models representing experienced personnel with knowledge sharing and inexperienced personnel with internal training respectively are employed to contrast test personnel capability. Second, performance evaluation of software testing process by different personnel capability is conducted to simulate system test using three project metrics, namely, duration, effort cost, and quality. Third, a comparative financial analysis is prepared to determine the best solution by return on investment, payback period, and benefit cost ratio. The results from three stages of finding are discussed to arrive at the final scenario. We provide a case study evaluating how software testing industry needs to build effective test organization with high quality personnel for sustainable development and improvement.
文摘Ultrasonic testing is a very important non-destructive method for testing components for safety of nuclear power plants and other security and delicate parts in other industries. Nowadays, thanks to the development of computer technology, it is possible to simulate processes which occur during ultrasonic testing. That is why numerical simulations are becoming an integral part of non-destructive testing. Simulations are used to determine parameters of ultrasonic examination, especially parameters of probes and scan plan and also in the analysis of results. They are used in such cases, when it is necessary to verify applicability of probes and methods. This verification could be provided on the weld and test block which are not manufactured. It could be also provided on defects, which are not manufactured in test block, but their presence is possible in given weld joint. Simulations are very useful for verifying the propagation of ultrasonic signal in given area (e.g. weld area). If movement of probe is limited, possibility of whole volume scan should be verified.
文摘The relation of mass, stiffness and rate of damping is obtained by using the mechanical analysis of the obstructive vibration system of two dimensions for the design of the obstructive vibration system of more freedom and the micro vibration test bed. The result of stimulational experiment indicates that the isolation of vibration of this system is satisfactory. The design method of vibration can be used as the reference to ultra precision machine tool, super micro orientation machanism and so on.
基金Supported by the Fund from COPC PL19-3 FPSO Project
文摘This paper describes the model test and the virtual simulation respectively for the VLCC class FPSO hookup, as well as addresses their different applications to the mating operation between the FPSO and the soft yoke mooring system (SYMS) in extremely shallow water. The scope of the model test and the virtual simulation covers various installation stages including a series of positioning trials, positioning keeping and temporary mooring to the pre-installed SYMS mooring tower, pendulum mating, and yoke ballasting to storm-safe. The model test is to accurately verify bollard pull capacity to keep the FPSO in position and assess motion responses and mooring loads for the FPSO and installation vessels during various installation stages. The virtual simulation is to provide a virtual-reality environment, thus realistically replicating the hookup operation at the Simulation Test Center (STC) facility and identifying any deficiencies in key installation personnel, execution plan, or operation procedures. The methodologies of the model test and the virtual simulation addressed here can be easily extended to the deepwater applications such as positioning and installation operations of various floating systems.
文摘Full scale aircraft static test is a very important process of aircraft design, it is costly and time consuming. The testing accuracy and validity mainly depend on the rationality of the test scheme design. When the aircraft is being tested, the specimen's safety mainly depends on monitoring and understanding the testing data by way of evaluating the coherence with the digital simulation data synchyononsly. The test digital simulation can aid realizing above requirements and improving the test efficiency significantly during test scheme design stage or testing stage respectively. The key technologies and the solving methods of test digital simulation are presented and the application example is given.
基金financial support from the National Natural Science Foundation of China (Grant No. 51709025)the Chongqing Science and Technology Commission of China (Grant No. cstc2018jcyjAX0084, cstc2018jcyjAX0391 and cstc2016jcyjA0551)Open Research Fund of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-Rock Dam of the Ministry of Water Resources (Grant No. YK319006)
文摘The present study focuses on the breaching process and failure of barrier dams due to overtopping. In this work, a series of centrifugal model tests is presented to examine the failure mechanisms of landslide dams. Based on the experimental results, failure process and mechanism of barrier dam due to overtopping are analyzed and further verified by simulating the experimental overtopping failure process. The results indicate that the barrier dam will develop during the entire process of overtopping in the width direction, whereas the breach will cease to develop at an early stage in the depth direction because of the large particles that accumulate on the downstream slope. Moreover, headcut erosion can be clearly observed in the first two stages of overtopping, and coarsening on the downstream slope occurs in the last stage of overtopping. Thus, the bottom part of the barrier dam can survive after dam breaching and full dam failure becomes relatively rare for a barrier dam. Furthermore, the remaining breach would be smaller than that of a homogeneous cohesive dam under the same conditions.
文摘Both theoretical and field observations were examined to study the close relationship between soil degeneration and the evolution of grassland vegetation. A general n-species model of equal competition under different degrees of soil degradation was applied to field data in order to probe the dynamic processes and mechanisms of vegetation evolution due to the effects of the soil's ecological deterioration on grassland vegetation. Comparisons were made between the theoretical results and the practical surveys with satisfactory results.