As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of...As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of navigation resources.Based on the space segment,control segment,and user segment of satellite navigation systems,this paper systematically constructs an offensive-defensive technology system for navigation warfare,and deeply analyzes core measures such as signal enhancement and suppression,autonomous navigation and link jamming,anti-jamming reception,and integrated navigation.It extracts key technologies including adaptive nulling antennas,joint filtering,and multi-dimensional combined jamming,and discusses the technical effectiveness of these technologies by incorporating relevant cases.The advantages of navigation warfare stem from multi-segment coordination and technological inte-gration.In the future,the development directions of navigation warfare will focus on three aspects:enhancing satellite capabilities,tackling core technical challenges,and building a multi-dimensional system.展开更多
The Global Precipitation Measurement(GPM)dual-frequency precipitation radar(DPR)products(Version 07A)are employed for a rigorous comparative analysis with ground-based operational weather radar(GR)networks.The reflect...The Global Precipitation Measurement(GPM)dual-frequency precipitation radar(DPR)products(Version 07A)are employed for a rigorous comparative analysis with ground-based operational weather radar(GR)networks.The reflectivity observed by GPM Ku PR is compared quantitatively against GR networks from CINRAD of China and NEXRAD of the United States,and the volume matching method is used for spatial matching.Additionally,a novel frequency correction method for all phases as well as precipitation types is used to correct the GPM Ku PR radar frequency to the GR frequency.A total of 20 GRs(including 10 from CINRAD and 10 from NEXRAD)are included in this comparative analysis.The results indicate that,compared with CINRAD matched data,NEXRAD exhibits larger biases in reflectivity when compared with the frequency-corrected Ku PR.The root-mean-square difference for CINRAD is calculated at 2.38 d B,whereas for NEXRAD it is 3.23 d B.The mean bias of CINRAD matched data is-0.16 d B,while the mean bias of NEXRAD is-2.10 d B.The mean standard deviation of bias for CINRAD is 2.15 d B,while for NEXRAD it is 2.29 d B.This study effectively assesses weather radar data in both the United States and China,which is crucial for improving the overall consistency of global precipitation estimates.展开更多
Background and Objective Electromagnetic navigation technology has demonstrated significant potential in enhancing the accuracy and safety of neurosurgical procedures.However,traditional electromagnetic navigation sys...Background and Objective Electromagnetic navigation technology has demonstrated significant potential in enhancing the accuracy and safety of neurosurgical procedures.However,traditional electromagnetic navigation systems face challenges such as high equipment costs,complex operation,bulky size,and insufficient anti-interference performance.To address these limitations,our study developed and validated a novel portable electromagnetic neuronavigation system designed to improve the precision,accessibility,and clinical applicability of electromagnetic navigation technology in cranial surgery.Methods The software and hardware architecture of a portable neural magnetic navigation system was designed.The key technologies of the system were analysed,including electromagnetic positioning algorithms,miniaturized sensor design,optimization of electromagnetic positioning and navigation algorithms,anti-interference signal processing methods,and fast three-dimensional reconstruction algorithms.A prototype was developed,and its accuracy was tested.Finally,a preliminary clinical application evaluation was conducted.Results This study successfully developed a comprehensive portable electromagnetic neuronavigation system capable of achieving preoperative planning,intraoperative real-time positioning and navigation,and postoperative evaluation of navigation outcomes.Through rigorous collaborative testing of the system’s software and hardware,the accuracy of electromagnetic neuronavigation has been validated to meet clinical requirements.Conclusions This study developed a portable neuroelectromagnetic navigation system and validated its effectiveness and safety through rigorous model testing and preliminary clinical applications.The system is characterized by its compact size,high precision,excellent portability,and user-friendly operation,making it highly valuable for promoting navigation technology and advancing the precision and minimally invasive nature of neurosurgical procedures.展开更多
Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively r...Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage.展开更多
Fluorescence imaging in the second near-infrared window(NIR-II,900-1880 nm)offers high signalto-background ratio(SBR),enhanced definition,and superior tissue penetration,making it ideal for real-time surgical navigati...Fluorescence imaging in the second near-infrared window(NIR-II,900-1880 nm)offers high signalto-background ratio(SBR),enhanced definition,and superior tissue penetration,making it ideal for real-time surgical navigation.However,with single-channel imaging,surgeons must frequently switch between the surgi⁃cal field and the NIR-II images on the monitor.To address this,a coaxial dual-channel imaging system that com⁃bines visible light and 1100 nm longpass(1100LP)fluorescence was developed.The system features a custom⁃ized coaxial dual-channel lens with optimized distortion,achieving precise alignment with an error of less than±0.15 mm.Additionally,the shared focusing mechanism simplifies operation.Using FDA-approved indocya⁃nine green(ICG),the system was successfully applied in dual-channel guided rat lymph node excision,and blood supply assessment of reconstructed human flap.This approach enhances surgical precision,improves opera⁃tional efficiency,and provides a valuable reference for further clinical translation of NIR-II fluorescence imaging.展开更多
With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation wind...With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.展开更多
Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including at...Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including atmospheric, hydrological, and nontidal ocean loading. Continuous improvements in the accuracy of surface mass loading products, performance of Earth models, and precise data-processing technologies have significantly advanced research on the effects of environmental loading on nonlinear variations in GNSS coordinate time series. However, owing to theoretical limitations, the lack of high spatiotemporal resolution surface mass observations, and the coupling of GNSS technology-related systematic errors, environmental loading and nonlinear GNSS reference station displacements remain inconsistent. The applicability and capability of these loading products across different regions also require further evaluation. This paper outlines methods for modeling environmental loading, surface mass loading products, and service organizations. In addition, it summarizes recent advances in applying environmental loading to address nonlinear variations in global and regional GNSS coordinate time series. Moreover, the scientific questions of existing studies are summarized, and insights into future research directions are provided. The complex nonlinear motion of reference stations is a major factor limiting the accuracy of the current terrestrial reference frame. Further refining the environmental load modeling method, establishing a surface mass distribution model with high spatiotemporal resolution and reliability, exploring other environmental load factors such as ice sheet and artificial mass-change effects, and developing an optimal data-processing model and strategy for reprocessing global reference station data consistently could contribute to the development of a millimeter-level nonlinear motion model for GNSS reference stations with actual physical significance and provide theoretical support for establishing a terrestrial reference frame with 1 mm accuracy by 2050.展开更多
1. Introduction Celestial navigation is a kind of navigation with a long history.With the increasing demand for intelligent autonomy and antielectromagnetic interference in spacecraft, celestial navigation has become ...1. Introduction Celestial navigation is a kind of navigation with a long history.With the increasing demand for intelligent autonomy and antielectromagnetic interference in spacecraft, celestial navigation has become one of the current research hotspots in spacecraft autonomous navigation. Spacecraft face complex electromagnetic interference in orbit. The time-varying, non-Gaussian interference from internal devices and external environment can lead to measurement distortion.展开更多
In order to address the challenges encountered in visual navigation for asteroid landing using traditional point features,such as significant recognition and extraction errors,low computational efficiency,and limited ...In order to address the challenges encountered in visual navigation for asteroid landing using traditional point features,such as significant recognition and extraction errors,low computational efficiency,and limited navigation accuracy,a novel approach for multi-type fusion visual navigation is proposed.This method aims to overcome the limitations of single-type features and enhance navigation accuracy.Analytical criteria for selecting multi-type features are introduced,which simultaneously improve computational efficiency and system navigation accuracy.Concerning pose estimation,both absolute and relative pose estimation methods based on multi-type feature fusion are proposed,and multi-type feature normalization is established,which significantly improves system navigation accuracy and lays the groundwork for flexible application of joint absolute-relative estimation.The feasibility and effectiveness of the proposed method are validated through simulation experiments through 4769 Castalia.展开更多
This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification metho...This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification methodology for practical implementation of vision-based navigation technology on the microsatellite platform.Firstly,a low power consumption,light weight,and high performance vision-based relative navigation optical sensor is designed.Subsequently,a set of ground verification system is designed for the hardware-in-the-loop testing of the vision-based relative navigation systems.Finally,the designed vision-based relative navigation optical sensor and the proposed angles-only navigation algorithms are tested on the ground verification system.The results verify that the optical simulator after geometrical calibration can meet the requirements of the hardware-in-the-loop testing of vision-based relative navigation systems.Based on experimental results,the relative position accuracy of the angles-only navigation filter at terminal time is increased by 25.5%,and the relative speed accuracy is increased by 31.3% compared with those of optical simulator before geometrical calibration.展开更多
Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning b...Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning based model,for the types identification.However,traditional approaches such as convolutional neural networks(CNNs)encounter difficulties in capturing global contextual information.In addition,they are computationally expensive,which restricts their usability in resource-limited environments.To tackle these issues,we present the Cloud Vision Transformer(CloudViT),a lightweight model that integrates CNNs with Transformers.The integration enables an effective balance between local and global feature extraction.To be specific,CloudViT comprises two innovative modules:Feature Extraction(E_Module)and Downsampling(D_Module).These modules are able to significantly reduce the number of model parameters and computational complexity while maintaining translation invariance and enhancing contextual comprehension.Overall,the CloudViT includes 0.93×10^(6)parameters,which decreases more than ten times compared to the SOTA(State-of-the-Art)model CloudNet.Comprehensive evaluations conducted on the HBMCD and SWIMCAT datasets showcase the outstanding performance of CloudViT.It achieves classification accuracies of 98.45%and 100%,respectively.Moreover,the efficiency and scalability of CloudViT make it an ideal candidate for deployment inmobile cloud observation systems,enabling real-time cloud image classification.The proposed hybrid architecture of CloudViT offers a promising approach for advancing ground-based cloud image classification.It holds significant potential for both optimizing performance and facilitating practical deployment scenarios.展开更多
Micro/nanorobots have significant potential applications in biomedicine.However,their small size and the need for intricate control make long-distance navigation of microswarms composed of such robots challenging in c...Micro/nanorobots have significant potential applications in biomedicine.However,their small size and the need for intricate control make long-distance navigation of microswarms composed of such robots challenging in complex environments.To address this problem,we have developed a permanent-magnet-actuated microswarm navigation system to achieve precise control of micro/nanorobots in complex fluid environments.The controlled microswarm is composed of monodisperse Fe_(3)O_(4)@PVP nanoclusters synthesized using the polyol method.These nanoclusters can self-assemble into highly controllable microswarm structures under a rotating magnetic field and are then guided by the robotic system for precise navigation.The system uses visual positioning and motion control to enable real-time dynamic navigation.In experiments,it successfully performed autonomous navigation over a 55 mm distance in a transparent channel,with flow rates ranging from 0 to 10 mm/s.It completed the task in 132 s at an average speed of over 0.45 mm/s,with an average trajectory tracking error of only 0.28 mm.These results demonstrate excellent path accuracy and stability under various flow rate conditions,validating the system’s adaptability and efficiency in fluid environments and highlighting its potential for biomedical applications.This study offers a robust and versatile platform for expanding micro/nanorobot applications in biomedicine.展开更多
Space target imaging simulation technology is an important tool for space target detection and identification,with advantages that include high flexibility and low cost.However,existing space target imaging simulation...Space target imaging simulation technology is an important tool for space target detection and identification,with advantages that include high flexibility and low cost.However,existing space target imaging simulation technologies are mostly based on target magnitudes for simulations,making it difficult to meet image simulation requirements for different signal-to-noise ratio(SNR)needs.Therefore,design of a simulation method that generates target image sequences with various SNRs based on the optical detection system parameters will be important for faint space target detection research.Addressing the SNR calculation issue in optical observation systems,this paper proposes a ground-based detection image SNR calculation method using the optical system parameters.This method calculates the SNR of an observed image precisely using radiative transfer theory,the optical system parameters,and the observation environment parameters.An SNR-based target sequence image simulation method for ground-based detection scenarios is proposed.This method calculates the imaging SNR using the optical system parameters and establishes a model for conversion between the target’s apparent magnitude and image grayscale values,thereby enabling generation of target sequence simulation images with corresponding SNRs for different system parameters.Experiments show that the SNR obtained using this calculation method has an average calculation error of<1 dB when compared with the theoretical SNR of the actual optical system.Additionally,the simulation images generated by the imaging simulation method show high consistency with real images,which meets the requirements of faint space target detection algorithm research and provides reliable data support for development of related technologies.展开更多
In multiple Unmanned Aerial Vehicles(UAV)systems,achieving efficient navigation is essential for executing complex tasks and enhancing autonomy.Traditional navigation methods depend on predefined control strategies an...In multiple Unmanned Aerial Vehicles(UAV)systems,achieving efficient navigation is essential for executing complex tasks and enhancing autonomy.Traditional navigation methods depend on predefined control strategies and trajectory planning and often perform poorly in complex environments.To improve the UAV-environment interaction efficiency,this study proposes a multi-UAV integrated navigation algorithm based on Deep Reinforcement Learning(DRL).This algorithm integrates the Inertial Navigation System(INS),Global Navigation Satellite System(GNSS),and Visual Navigation System(VNS)for comprehensive information fusion.Specifically,an improved multi-UAV integrated navigation algorithm called Information Fusion with MultiAgent Deep Deterministic Policy Gradient(IF-MADDPG)was developed.This algorithm enables UAVs to learn collaboratively and optimize their flight trajectories in real time.Through simulations and experiments,test scenarios in GNSS-denied environments were constructed to evaluate the effectiveness of the algorithm.The experimental results demonstrate that the IF-MADDPG algorithm significantly enhances the collaborative navigation capabilities of multiple UAVs in formation maintenance and GNSS-denied environments.Additionally,it has advantages in terms of mission completion time.This study provides a novel approach for efficient collaboration in multi-UAV systems,which significantly improves the robustness and adaptability of navigation systems.展开更多
Objective:To observe the guiding role of image navigation technology in the treatment of patients with tuberculosis.Methods:A total of 188 patients with multidrug-resistant tuberculosis(MDR-TB)and rifampin-resistant t...Objective:To observe the guiding role of image navigation technology in the treatment of patients with tuberculosis.Methods:A total of 188 patients with multidrug-resistant tuberculosis(MDR-TB)and rifampin-resistant tuberculosis(RR-TB)who were hospitalized in the hospital from September 2023 to September 2024 were included.After random equal division,94 patients were included in the control group and received systemic anti-tuberculosis chemotherapy;94 patients were included in the treatment group.Based on systemic anti-tuberculosis treatment,digital subtraction angiography(DSA)technology was used to inject targeted drugs into the bronchial lumen through bronchoscopy to complete anti-tuberculosis treatment.The changes in sputum bacteria and imaging were observed in the two groups.Results:The sputum negative conversion rate in the treatment group was significantly higher than that in the control group(86.2%;70.2%)(u=2.74,P<0.01).The absorption rate of CT imaging lesions(significant absorption)was significantly higher than that of the control group(83.0%;50%)(u=2.45,P<0.05).The closure rate of chest CT cavities was significantly higher than that of the control group(74.2%;39.1%)(u=2.20,P<0.05).During the treatment process,the improvement of clinical symptoms was significantly higher than that of the control group,and the difference was statistically significant.There was no statistically significant difference in the incidence of adverse reactions between the two groups(x^(2)=0.434,P>0.05).Conclusion:Based on DSA,targeted drug infusion within the bronchoscope can significantly improve the efficacy of the disease,with mild adverse reactions that patients can tolerate.It is worthy of promotion and application.展开更多
Mobile robots represented by smart wheelchairs can assist elderly people with mobility difficulties.This paper proposes a multi-mode semi-autonomous navigation system based on a local semantic map for mobile robots,wh...Mobile robots represented by smart wheelchairs can assist elderly people with mobility difficulties.This paper proposes a multi-mode semi-autonomous navigation system based on a local semantic map for mobile robots,which can assist users to implement accurate navigation(e.g.,docking)in the environment without prior maps.In order to overcome the problem of repeated oscillations during the docking of traditional local path planning algorithms,this paper adopts a mode-switching method and uses feedback control to perform docking when approaching semantic goals.At last,comparative experiments were carried out in the real environment.Results show that our method is superior in terms of safety,comfort and docking accuracy.展开更多
Flapping Wing Aerial Vehicles(FWAVs)hold immense potential for applications such as search-and-rescue missions in complex terrains,environmental monitoring in hazardous areas,and exploration in confined spaces.However...Flapping Wing Aerial Vehicles(FWAVs)hold immense potential for applications such as search-and-rescue missions in complex terrains,environmental monitoring in hazardous areas,and exploration in confined spaces.However,their adoption is hindered by the challenges of autonomous navigation in unknown environments,exacerbated by their limited onboard computational resources and demanding flight dynamics.This work addresses these challenges by presenting a lightweight,vision-based autonomous navigation system weighing 26.0 g,enabling FWAVs to achieve obstacle-avoidance flight at a speed of 9.0 m/s.Central to this system is a novel end-toend Bi-level Cooperative Policy(BCP)that significantly improves flight efficiency and safety.BCP employs lightweight neural networks for real-time performance and leverages Hierarchical Reinforcement Learning(HRL)for robust and efficient training.Quantitative evaluations show that BCP achieves up to 6.5%shorter path lengths,11.2%faster task completion time,and improved explainability compared to state-of-the-art reinforcement learning algorithms.Additionally,BCP demonstrates 35.7%more efficient and stable training,reducing computational overhead while maintaining high performance.The system design incorporates optimized lightweight components,including a 4.0 g customized stereo camera,a 6.0 g 3D-printed camera mount,and a 16.0 g onboard computer,all tailored to FWAV applications.Real-flight experiments validate the sim-toreal transferability of the proposed navigation system,demonstrating its readiness for real-world deployment in challenging scenarios.This research advances the practicality of FWAVs,paving the way for their broader adoption in critical missions where compact,agile aerial robots are indispensable.展开更多
Robot navigation in complex crowd service scenarios,such as medical logistics and commercial guidance,requires a dynamic balance between safety and efficiency,while the traditional fixed reward mechanism lacks environ...Robot navigation in complex crowd service scenarios,such as medical logistics and commercial guidance,requires a dynamic balance between safety and efficiency,while the traditional fixed reward mechanism lacks environmental adaptability and struggles to adapt to the variability of crowd density and pedestrian motion patterns.This paper proposes a navigation method that integrates spatiotemporal risk field modeling and adaptive reward optimization,aiming to improve the robot’s decision-making ability in diverse crowd scenarios through dynamic risk assessment and nonlinear weight adjustment.We construct a spatiotemporal risk field model based on a Gaussian kernel function by combining crowd density,relative distance,andmotion speed to quantify environmental complexity and realize crowd-density-sensitive risk assessment dynamically.We apply an exponential decay function to reward design to address the linear conflict problem of fixed weights in multi-objective optimization.We adaptively adjust weight allocation between safety constraints and navigation efficiency based on real-time risk values,prioritizing safety in highly dense areas and navigation efficiency in sparse areas.Experimental results show that our method improves the navigation success rate by 9.0%over state-of-the-art models in high-density scenarios,with a 10.7%reduction in intrusion time ratio.Simulation comparisons validate the risk field model’s ability to capture risk superposition effects in dense scenarios and the suppression of near-field dangerous behaviors by the exponential decay mechanism.Our parametric optimization paradigm establishes an explicit mapping between navigation objectives and risk parameters through rigorous mathematical formalization,providing an interpretable approach for safe deployment of service robots in dynamic environments.展开更多
Actively controllable microswarms have been a rapidly developing research field with appealing characteristics.Autonomous collision-free navigation of microswarms in confined environments is suitable for various appli...Actively controllable microswarms have been a rapidly developing research field with appealing characteristics.Autonomous collision-free navigation of microswarms in confined environments is suitable for various applications,including targeted therapy and delivery.However,several challenges remain unaddressed.First,microswarms possess varying dimensions,and a path planning method suitable to swarms with different dimensions is essential to avoid obstacles.Second,studies on the environment-adaptive navigation of reconfigurable microswarms are limited.Therefore,the planning of the pattern distribution of microswarms based on the local working environment should be examined.This study proposes a deep learning(DL)-based environment-adaptive navigation scheme for swarms.The controller provides reference moving directions for swarms of different sizes in static and dynamic scenarios.Moreover,a pattern-distribution planner was designed to navigate transformable swarms in unstructured environments.To validate the proposed scheme,we applied Fe3O4 nanoparticles swarms as a case study.The proposed scheme enables motion and pattern planning for microrobots of multiple sizes and reconfigurability in various working environments,which could foster a general navigation system for reconfigurable microswarms of different sizes.展开更多
文摘As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of navigation resources.Based on the space segment,control segment,and user segment of satellite navigation systems,this paper systematically constructs an offensive-defensive technology system for navigation warfare,and deeply analyzes core measures such as signal enhancement and suppression,autonomous navigation and link jamming,anti-jamming reception,and integrated navigation.It extracts key technologies including adaptive nulling antennas,joint filtering,and multi-dimensional combined jamming,and discusses the technical effectiveness of these technologies by incorporating relevant cases.The advantages of navigation warfare stem from multi-segment coordination and technological inte-gration.In the future,the development directions of navigation warfare will focus on three aspects:enhancing satellite capabilities,tackling core technical challenges,and building a multi-dimensional system.
基金funded by the National Key Research and Development Program of China(Grant No.2023YFB3907500)the National Natural Science Foundation(Grant No.42330602)the“Fengyun Satellite Remote Sensing Product Validation and Verification”Youth Innovation Team of the China Meteorological Administration(Grant No.CMA2023QN12)。
文摘The Global Precipitation Measurement(GPM)dual-frequency precipitation radar(DPR)products(Version 07A)are employed for a rigorous comparative analysis with ground-based operational weather radar(GR)networks.The reflectivity observed by GPM Ku PR is compared quantitatively against GR networks from CINRAD of China and NEXRAD of the United States,and the volume matching method is used for spatial matching.Additionally,a novel frequency correction method for all phases as well as precipitation types is used to correct the GPM Ku PR radar frequency to the GR frequency.A total of 20 GRs(including 10 from CINRAD and 10 from NEXRAD)are included in this comparative analysis.The results indicate that,compared with CINRAD matched data,NEXRAD exhibits larger biases in reflectivity when compared with the frequency-corrected Ku PR.The root-mean-square difference for CINRAD is calculated at 2.38 d B,whereas for NEXRAD it is 3.23 d B.The mean bias of CINRAD matched data is-0.16 d B,while the mean bias of NEXRAD is-2.10 d B.The mean standard deviation of bias for CINRAD is 2.15 d B,while for NEXRAD it is 2.29 d B.This study effectively assesses weather radar data in both the United States and China,which is crucial for improving the overall consistency of global precipitation estimates.
基金funded by National Natural Science Foundation of China(No.82272134)Innovative Research Group Project of the National Natural Science Foundation of China(No.82272134,Xiao-lei Chen).
文摘Background and Objective Electromagnetic navigation technology has demonstrated significant potential in enhancing the accuracy and safety of neurosurgical procedures.However,traditional electromagnetic navigation systems face challenges such as high equipment costs,complex operation,bulky size,and insufficient anti-interference performance.To address these limitations,our study developed and validated a novel portable electromagnetic neuronavigation system designed to improve the precision,accessibility,and clinical applicability of electromagnetic navigation technology in cranial surgery.Methods The software and hardware architecture of a portable neural magnetic navigation system was designed.The key technologies of the system were analysed,including electromagnetic positioning algorithms,miniaturized sensor design,optimization of electromagnetic positioning and navigation algorithms,anti-interference signal processing methods,and fast three-dimensional reconstruction algorithms.A prototype was developed,and its accuracy was tested.Finally,a preliminary clinical application evaluation was conducted.Results This study successfully developed a comprehensive portable electromagnetic neuronavigation system capable of achieving preoperative planning,intraoperative real-time positioning and navigation,and postoperative evaluation of navigation outcomes.Through rigorous collaborative testing of the system’s software and hardware,the accuracy of electromagnetic neuronavigation has been validated to meet clinical requirements.Conclusions This study developed a portable neuroelectromagnetic navigation system and validated its effectiveness and safety through rigorous model testing and preliminary clinical applications.The system is characterized by its compact size,high precision,excellent portability,and user-friendly operation,making it highly valuable for promoting navigation technology and advancing the precision and minimally invasive nature of neurosurgical procedures.
文摘Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage.
基金Supported by the National Natural Science Foundation of China(U23A20487)the National Key R&D Program of China(2022YFB3206000)+1 种基金Dr.Li Dak Sum&Yip Yio Chin Development Fund for Regenerative Medicine,Zhejiang Universitythe National Natural Science Foundation of China(61975172).
文摘Fluorescence imaging in the second near-infrared window(NIR-II,900-1880 nm)offers high signalto-background ratio(SBR),enhanced definition,and superior tissue penetration,making it ideal for real-time surgical navigation.However,with single-channel imaging,surgeons must frequently switch between the surgi⁃cal field and the NIR-II images on the monitor.To address this,a coaxial dual-channel imaging system that com⁃bines visible light and 1100 nm longpass(1100LP)fluorescence was developed.The system features a custom⁃ized coaxial dual-channel lens with optimized distortion,achieving precise alignment with an error of less than±0.15 mm.Additionally,the shared focusing mechanism simplifies operation.Using FDA-approved indocya⁃nine green(ICG),the system was successfully applied in dual-channel guided rat lymph node excision,and blood supply assessment of reconstructed human flap.This approach enhances surgical precision,improves opera⁃tional efficiency,and provides a valuable reference for further clinical translation of NIR-II fluorescence imaging.
文摘With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction.
基金supported by the Basic Science Center Project of the National Natural Science Foundation of China(42388102)the National Natural Science Foundation of China(42174030)+2 种基金the Special Fund of Hubei Luojia Laboratory(220100020)the Major Science and Technology Program for Hubei Province(2022AAA002)the Fundamental Research Funds for the Central Universities of China(2042022dx0001 and 2042023kfyq01)。
文摘Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including atmospheric, hydrological, and nontidal ocean loading. Continuous improvements in the accuracy of surface mass loading products, performance of Earth models, and precise data-processing technologies have significantly advanced research on the effects of environmental loading on nonlinear variations in GNSS coordinate time series. However, owing to theoretical limitations, the lack of high spatiotemporal resolution surface mass observations, and the coupling of GNSS technology-related systematic errors, environmental loading and nonlinear GNSS reference station displacements remain inconsistent. The applicability and capability of these loading products across different regions also require further evaluation. This paper outlines methods for modeling environmental loading, surface mass loading products, and service organizations. In addition, it summarizes recent advances in applying environmental loading to address nonlinear variations in global and regional GNSS coordinate time series. Moreover, the scientific questions of existing studies are summarized, and insights into future research directions are provided. The complex nonlinear motion of reference stations is a major factor limiting the accuracy of the current terrestrial reference frame. Further refining the environmental load modeling method, establishing a surface mass distribution model with high spatiotemporal resolution and reliability, exploring other environmental load factors such as ice sheet and artificial mass-change effects, and developing an optimal data-processing model and strategy for reprocessing global reference station data consistently could contribute to the development of a millimeter-level nonlinear motion model for GNSS reference stations with actual physical significance and provide theoretical support for establishing a terrestrial reference frame with 1 mm accuracy by 2050.
基金supported by the National Level Project of China (No. 2020-JCJQ-ZQ-059)。
文摘1. Introduction Celestial navigation is a kind of navigation with a long history.With the increasing demand for intelligent autonomy and antielectromagnetic interference in spacecraft, celestial navigation has become one of the current research hotspots in spacecraft autonomous navigation. Spacecraft face complex electromagnetic interference in orbit. The time-varying, non-Gaussian interference from internal devices and external environment can lead to measurement distortion.
基金supported by the National Natural Science Foundation of China(No.U2037602)。
文摘In order to address the challenges encountered in visual navigation for asteroid landing using traditional point features,such as significant recognition and extraction errors,low computational efficiency,and limited navigation accuracy,a novel approach for multi-type fusion visual navigation is proposed.This method aims to overcome the limitations of single-type features and enhance navigation accuracy.Analytical criteria for selecting multi-type features are introduced,which simultaneously improve computational efficiency and system navigation accuracy.Concerning pose estimation,both absolute and relative pose estimation methods based on multi-type feature fusion are proposed,and multi-type feature normalization is established,which significantly improves system navigation accuracy and lays the groundwork for flexible application of joint absolute-relative estimation.The feasibility and effectiveness of the proposed method are validated through simulation experiments through 4769 Castalia.
基金supported in part by the Doctoral Initiation Fund of Nanchang Hangkong University(No.EA202403107)Jiangxi Province Early Career Youth Science and Technology Talent Training Project(No.CK202403509).
文摘This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification methodology for practical implementation of vision-based navigation technology on the microsatellite platform.Firstly,a low power consumption,light weight,and high performance vision-based relative navigation optical sensor is designed.Subsequently,a set of ground verification system is designed for the hardware-in-the-loop testing of the vision-based relative navigation systems.Finally,the designed vision-based relative navigation optical sensor and the proposed angles-only navigation algorithms are tested on the ground verification system.The results verify that the optical simulator after geometrical calibration can meet the requirements of the hardware-in-the-loop testing of vision-based relative navigation systems.Based on experimental results,the relative position accuracy of the angles-only navigation filter at terminal time is increased by 25.5%,and the relative speed accuracy is increased by 31.3% compared with those of optical simulator before geometrical calibration.
基金funded by Innovation and Development Special Project of China Meteorological Administration(CXFZ2022J038,CXFZ2024J035)Sichuan Science and Technology Program(No.2023YFQ0072)+1 种基金Key Laboratory of Smart Earth(No.KF2023YB03-07)Automatic Software Generation and Intelligent Service Key Laboratory of Sichuan Province(CUIT-SAG202210).
文摘Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning based model,for the types identification.However,traditional approaches such as convolutional neural networks(CNNs)encounter difficulties in capturing global contextual information.In addition,they are computationally expensive,which restricts their usability in resource-limited environments.To tackle these issues,we present the Cloud Vision Transformer(CloudViT),a lightweight model that integrates CNNs with Transformers.The integration enables an effective balance between local and global feature extraction.To be specific,CloudViT comprises two innovative modules:Feature Extraction(E_Module)and Downsampling(D_Module).These modules are able to significantly reduce the number of model parameters and computational complexity while maintaining translation invariance and enhancing contextual comprehension.Overall,the CloudViT includes 0.93×10^(6)parameters,which decreases more than ten times compared to the SOTA(State-of-the-Art)model CloudNet.Comprehensive evaluations conducted on the HBMCD and SWIMCAT datasets showcase the outstanding performance of CloudViT.It achieves classification accuracies of 98.45%and 100%,respectively.Moreover,the efficiency and scalability of CloudViT make it an ideal candidate for deployment inmobile cloud observation systems,enabling real-time cloud image classification.The proposed hybrid architecture of CloudViT offers a promising approach for advancing ground-based cloud image classification.It holds significant potential for both optimizing performance and facilitating practical deployment scenarios.
基金supported by the National Natural Science Foundation of China(Grant No.52073222)the Fundamental Research Funds for the Central Universities(Grant No.WUT:104972024JYS0027).
文摘Micro/nanorobots have significant potential applications in biomedicine.However,their small size and the need for intricate control make long-distance navigation of microswarms composed of such robots challenging in complex environments.To address this problem,we have developed a permanent-magnet-actuated microswarm navigation system to achieve precise control of micro/nanorobots in complex fluid environments.The controlled microswarm is composed of monodisperse Fe_(3)O_(4)@PVP nanoclusters synthesized using the polyol method.These nanoclusters can self-assemble into highly controllable microswarm structures under a rotating magnetic field and are then guided by the robotic system for precise navigation.The system uses visual positioning and motion control to enable real-time dynamic navigation.In experiments,it successfully performed autonomous navigation over a 55 mm distance in a transparent channel,with flow rates ranging from 0 to 10 mm/s.It completed the task in 132 s at an average speed of over 0.45 mm/s,with an average trajectory tracking error of only 0.28 mm.These results demonstrate excellent path accuracy and stability under various flow rate conditions,validating the system’s adaptability and efficiency in fluid environments and highlighting its potential for biomedical applications.This study offers a robust and versatile platform for expanding micro/nanorobot applications in biomedicine.
基金supported by Open Fund of National Key Laboratory of Deep Space Exploration(NKDSEL2024014)by Civil Aerospace Pre-research Project of State Administration of Science,Technology and Industry for National Defence,PRC(D040103).
文摘Space target imaging simulation technology is an important tool for space target detection and identification,with advantages that include high flexibility and low cost.However,existing space target imaging simulation technologies are mostly based on target magnitudes for simulations,making it difficult to meet image simulation requirements for different signal-to-noise ratio(SNR)needs.Therefore,design of a simulation method that generates target image sequences with various SNRs based on the optical detection system parameters will be important for faint space target detection research.Addressing the SNR calculation issue in optical observation systems,this paper proposes a ground-based detection image SNR calculation method using the optical system parameters.This method calculates the SNR of an observed image precisely using radiative transfer theory,the optical system parameters,and the observation environment parameters.An SNR-based target sequence image simulation method for ground-based detection scenarios is proposed.This method calculates the imaging SNR using the optical system parameters and establishes a model for conversion between the target’s apparent magnitude and image grayscale values,thereby enabling generation of target sequence simulation images with corresponding SNRs for different system parameters.Experiments show that the SNR obtained using this calculation method has an average calculation error of<1 dB when compared with the theoretical SNR of the actual optical system.Additionally,the simulation images generated by the imaging simulation method show high consistency with real images,which meets the requirements of faint space target detection algorithm research and provides reliable data support for development of related technologies.
基金co-supported by the National Natural Science Foundation of China(Nos.92371201 and 52192633)the Natural Science Foundation of Shaanxi Province of China(No.2022JC-03)the Aeronautical Science Foundation of China(No.ASFC-20220019070002)。
文摘In multiple Unmanned Aerial Vehicles(UAV)systems,achieving efficient navigation is essential for executing complex tasks and enhancing autonomy.Traditional navigation methods depend on predefined control strategies and trajectory planning and often perform poorly in complex environments.To improve the UAV-environment interaction efficiency,this study proposes a multi-UAV integrated navigation algorithm based on Deep Reinforcement Learning(DRL).This algorithm integrates the Inertial Navigation System(INS),Global Navigation Satellite System(GNSS),and Visual Navigation System(VNS)for comprehensive information fusion.Specifically,an improved multi-UAV integrated navigation algorithm called Information Fusion with MultiAgent Deep Deterministic Policy Gradient(IF-MADDPG)was developed.This algorithm enables UAVs to learn collaboratively and optimize their flight trajectories in real time.Through simulations and experiments,test scenarios in GNSS-denied environments were constructed to evaluate the effectiveness of the algorithm.The experimental results demonstrate that the IF-MADDPG algorithm significantly enhances the collaborative navigation capabilities of multiple UAVs in formation maintenance and GNSS-denied environments.Additionally,it has advantages in terms of mission completion time.This study provides a novel approach for efficient collaboration in multi-UAV systems,which significantly improves the robustness and adaptability of navigation systems.
基金Science and Education Department Harbin Health Committee Project。
文摘Objective:To observe the guiding role of image navigation technology in the treatment of patients with tuberculosis.Methods:A total of 188 patients with multidrug-resistant tuberculosis(MDR-TB)and rifampin-resistant tuberculosis(RR-TB)who were hospitalized in the hospital from September 2023 to September 2024 were included.After random equal division,94 patients were included in the control group and received systemic anti-tuberculosis chemotherapy;94 patients were included in the treatment group.Based on systemic anti-tuberculosis treatment,digital subtraction angiography(DSA)technology was used to inject targeted drugs into the bronchial lumen through bronchoscopy to complete anti-tuberculosis treatment.The changes in sputum bacteria and imaging were observed in the two groups.Results:The sputum negative conversion rate in the treatment group was significantly higher than that in the control group(86.2%;70.2%)(u=2.74,P<0.01).The absorption rate of CT imaging lesions(significant absorption)was significantly higher than that of the control group(83.0%;50%)(u=2.45,P<0.05).The closure rate of chest CT cavities was significantly higher than that of the control group(74.2%;39.1%)(u=2.20,P<0.05).During the treatment process,the improvement of clinical symptoms was significantly higher than that of the control group,and the difference was statistically significant.There was no statistically significant difference in the incidence of adverse reactions between the two groups(x^(2)=0.434,P>0.05).Conclusion:Based on DSA,targeted drug infusion within the bronchoscope can significantly improve the efficacy of the disease,with mild adverse reactions that patients can tolerate.It is worthy of promotion and application.
基金the Technology Project Managed by the State Grid Corporation of China(No.5108-202218280A-2-249-XG)。
文摘Mobile robots represented by smart wheelchairs can assist elderly people with mobility difficulties.This paper proposes a multi-mode semi-autonomous navigation system based on a local semantic map for mobile robots,which can assist users to implement accurate navigation(e.g.,docking)in the environment without prior maps.In order to overcome the problem of repeated oscillations during the docking of traditional local path planning algorithms,this paper adopts a mode-switching method and uses feedback control to perform docking when approaching semantic goals.At last,comparative experiments were carried out in the real environment.Results show that our method is superior in terms of safety,comfort and docking accuracy.
基金supported by the Fundamental Research Funds for the Central Universities,China。
文摘Flapping Wing Aerial Vehicles(FWAVs)hold immense potential for applications such as search-and-rescue missions in complex terrains,environmental monitoring in hazardous areas,and exploration in confined spaces.However,their adoption is hindered by the challenges of autonomous navigation in unknown environments,exacerbated by their limited onboard computational resources and demanding flight dynamics.This work addresses these challenges by presenting a lightweight,vision-based autonomous navigation system weighing 26.0 g,enabling FWAVs to achieve obstacle-avoidance flight at a speed of 9.0 m/s.Central to this system is a novel end-toend Bi-level Cooperative Policy(BCP)that significantly improves flight efficiency and safety.BCP employs lightweight neural networks for real-time performance and leverages Hierarchical Reinforcement Learning(HRL)for robust and efficient training.Quantitative evaluations show that BCP achieves up to 6.5%shorter path lengths,11.2%faster task completion time,and improved explainability compared to state-of-the-art reinforcement learning algorithms.Additionally,BCP demonstrates 35.7%more efficient and stable training,reducing computational overhead while maintaining high performance.The system design incorporates optimized lightweight components,including a 4.0 g customized stereo camera,a 6.0 g 3D-printed camera mount,and a 16.0 g onboard computer,all tailored to FWAV applications.Real-flight experiments validate the sim-toreal transferability of the proposed navigation system,demonstrating its readiness for real-world deployment in challenging scenarios.This research advances the practicality of FWAVs,paving the way for their broader adoption in critical missions where compact,agile aerial robots are indispensable.
基金supported by the Sichuan Science and Technology Program(2025ZNSFSC0005).
文摘Robot navigation in complex crowd service scenarios,such as medical logistics and commercial guidance,requires a dynamic balance between safety and efficiency,while the traditional fixed reward mechanism lacks environmental adaptability and struggles to adapt to the variability of crowd density and pedestrian motion patterns.This paper proposes a navigation method that integrates spatiotemporal risk field modeling and adaptive reward optimization,aiming to improve the robot’s decision-making ability in diverse crowd scenarios through dynamic risk assessment and nonlinear weight adjustment.We construct a spatiotemporal risk field model based on a Gaussian kernel function by combining crowd density,relative distance,andmotion speed to quantify environmental complexity and realize crowd-density-sensitive risk assessment dynamically.We apply an exponential decay function to reward design to address the linear conflict problem of fixed weights in multi-objective optimization.We adaptively adjust weight allocation between safety constraints and navigation efficiency based on real-time risk values,prioritizing safety in highly dense areas and navigation efficiency in sparse areas.Experimental results show that our method improves the navigation success rate by 9.0%over state-of-the-art models in high-density scenarios,with a 10.7%reduction in intrusion time ratio.Simulation comparisons validate the risk field model’s ability to capture risk superposition effects in dense scenarios and the suppression of near-field dangerous behaviors by the exponential decay mechanism.Our parametric optimization paradigm establishes an explicit mapping between navigation objectives and risk parameters through rigorous mathematical formalization,providing an interpretable approach for safe deployment of service robots in dynamic environments.
基金funding support from the National Key R&D Program of China(2023YFB4705600)the Hong Kong Research Grants Council(RGC)with Research Impact Fund(R4015-21)+4 种基金the Research Fellow Scheme(RFS2122-4S03)the Strategic Topics Grant(STG1/E-401/23-N,GRF14300621,GRF14301122,GRF14205823,GRF15206223,and GRF25200424)the Guangdong Basic and Applied Basic Research Foundation Project(2023A1515110709)the Research Institute for Advanced Manufacturing(RIAM)of the Hong Kong Polytechnic University(1-CD9F and 1-CDK3)the Startup Fund Project(1-BE9L)of the Hong Kong Polytechnic University。
文摘Actively controllable microswarms have been a rapidly developing research field with appealing characteristics.Autonomous collision-free navigation of microswarms in confined environments is suitable for various applications,including targeted therapy and delivery.However,several challenges remain unaddressed.First,microswarms possess varying dimensions,and a path planning method suitable to swarms with different dimensions is essential to avoid obstacles.Second,studies on the environment-adaptive navigation of reconfigurable microswarms are limited.Therefore,the planning of the pattern distribution of microswarms based on the local working environment should be examined.This study proposes a deep learning(DL)-based environment-adaptive navigation scheme for swarms.The controller provides reference moving directions for swarms of different sizes in static and dynamic scenarios.Moreover,a pattern-distribution planner was designed to navigate transformable swarms in unstructured environments.To validate the proposed scheme,we applied Fe3O4 nanoparticles swarms as a case study.The proposed scheme enables motion and pattern planning for microrobots of multiple sizes and reconfigurability in various working environments,which could foster a general navigation system for reconfigurable microswarms of different sizes.