期刊文献+
共找到1,198篇文章
< 1 2 60 >
每页显示 20 50 100
CloudViT:A Lightweight Ground-Based Cloud Image Classification Model with the Ability to Capture Global Features
1
作者 Daoming Wei Fangyan Ge +5 位作者 Bopeng Zhang Zhiqiang Zhao Dequan Li Lizong Xi Jinrong Hu Xin Wang 《Computers, Materials & Continua》 2025年第6期5729-5746,共18页
Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning b... Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning based model,for the types identification.However,traditional approaches such as convolutional neural networks(CNNs)encounter difficulties in capturing global contextual information.In addition,they are computationally expensive,which restricts their usability in resource-limited environments.To tackle these issues,we present the Cloud Vision Transformer(CloudViT),a lightweight model that integrates CNNs with Transformers.The integration enables an effective balance between local and global feature extraction.To be specific,CloudViT comprises two innovative modules:Feature Extraction(E_Module)and Downsampling(D_Module).These modules are able to significantly reduce the number of model parameters and computational complexity while maintaining translation invariance and enhancing contextual comprehension.Overall,the CloudViT includes 0.93×10^(6)parameters,which decreases more than ten times compared to the SOTA(State-of-the-Art)model CloudNet.Comprehensive evaluations conducted on the HBMCD and SWIMCAT datasets showcase the outstanding performance of CloudViT.It achieves classification accuracies of 98.45%and 100%,respectively.Moreover,the efficiency and scalability of CloudViT make it an ideal candidate for deployment inmobile cloud observation systems,enabling real-time cloud image classification.The proposed hybrid architecture of CloudViT offers a promising approach for advancing ground-based cloud image classification.It holds significant potential for both optimizing performance and facilitating practical deployment scenarios. 展开更多
关键词 Image classification ground-based cloud images lightweight neural networks attention mechanism deep learning vision transformer
在线阅读 下载PDF
A modified method of discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces 被引量:14
2
作者 Keshen Zhang Wei Wu +3 位作者 Hehua Zhu Lianyang Zhang Xiaojun Li Hong Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期571-586,共16页
This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by... This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by normal tensor voting theory,(2)co ntraction of trace feature points,(3)connection of trace feature points,(4)linearization of trace segments,and(5)connection of trace segments.A sensitivity analysis was then conducted to identify the optimal parameters of the proposed method.Three field cases,a natural rock mass outcrop and two excavated rock tunnel surfaces,were analyzed using the proposed method to evaluate its validity and efficiency.The results show that the proposed method is more efficient and accurate than the traditional trace mapping method,and the efficiency enhancement is more robust as the number of feature points increases. 展开更多
关键词 Rock mass DISCONTINUITY Three-dimensional point clouds Trace mapping
在线阅读 下载PDF
Improving Satellite-Retrieved Cloud Base Height with Ground-Based Cloud Radar Measurements 被引量:1
3
作者 Zhonghui TAN Ju WANG +3 位作者 Jianping GUO Chao LIU Miao ZHANG Shuo MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2131-2140,共10页
Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in p... Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates. 展开更多
关键词 cloud base height passive radiometer ground-based cloud radar remote sensing
在线阅读 下载PDF
Ground-Based Cloud Using Exponential Entropy/Exponential Gray Entropy and UPSO
4
作者 吴一全 殷骏 毕硕本 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第6期599-608,共10页
Objective and accurate classification model or method of cloud image is a prerequisite for accurate weather monitoring and forecast.Thus safety of aircraft taking off and landing and air flight can be guaranteed.Thres... Objective and accurate classification model or method of cloud image is a prerequisite for accurate weather monitoring and forecast.Thus safety of aircraft taking off and landing and air flight can be guaranteed.Thresholding is a kind of simple and effective method of cloud classification.It can realize automated ground-based cloud detection and cloudage observation.The existing segmentation methods based on fixed threshold and single threshold cannot achieve good segmentation effect.Thus it is difficult to obtain the accurate result of cloud detection and cloudage observation.In view of the above-mentioned problems,multi-thresholding methods of ground-based cloud based on exponential entropy/exponential gray entropy and uniform searching particle swarm optimization(UPSO)are proposed.Exponential entropy and exponential gray entropy make up for the defects of undefined value and zero value in Shannon entropy.In addition,exponential gray entropy reflects the relative uniformity of gray levels within the cloud cluster and background cluster.Cloud regions and background regions of different gray level ranges can be distinguished more precisely using the multi-thresholding strategy.In order to reduce computational complexity of original exhaustive algorithm for multi-threshold selection,the UPSO algorithm is adopted.It can find the optimal thresholds quickly and accurately.As a result,the real-time processing of segmentation of groundbased cloud image can be realized.The experimental results show that,in comparison with the existing groundbased cloud image segmentation methods and multi-thresholding method based on maximum Shannon entropy,the proposed methods can extract the boundary shape,textures and details feature of cloud more clearly.Therefore,the accuracies of cloudage detection and morphology classification for ground-based cloud are both improved. 展开更多
关键词 detection of ground-based cloud multi-thresholding of cloud image exponential entropy exponential gray entropy uniform searching particle swarm optimization(UPSO)
在线阅读 下载PDF
Mapping High-Level Application Requirements onto Low-Level Cloud Resources
5
作者 Yih Leong Sun Terence Harmer Alan Stewart 《Journal of Software Engineering and Applications》 2012年第11期894-902,共9页
Cloud computing has created a paradigm shift that affects the way in which business applications are developed. Many business organizations use cloud infrastructures as platforms on which to deploy business applicatio... Cloud computing has created a paradigm shift that affects the way in which business applications are developed. Many business organizations use cloud infrastructures as platforms on which to deploy business applications. Increasing numbers of vendors are supplying the cloud marketplace with a wide range of cloud products. Different vendors offer cloud products in different formats. The cost structures for consuming cloud products can be complex. Finding a suitable set of cloud products that meets an application’s requirements and budget can be a challenging task. In this paper, an ontology-based resource mapping mechanism is proposed. Domain-specific ontologies are used to specify high-level application’s requirements. These are then translated into high-level infrastructure ontologies which then can be mapped onto low-level descriptions of cloud resources. Cost ontologies are proposed for cloud resources. An exemplar media transcoding and delivery service is studied in order to illustrate how high-level requirements can be modeled and mapped onto cloud resources within a budget constraint. The proposed ontologies provide an application-centric mechanism for specifying cloud requirements which can then be used for searching for suitable resources in a multi-provider cloud environment. 展开更多
关键词 cloud Computing RESOURCE mapping cloud ONTOLOGY Cost Model
在线阅读 下载PDF
A multi-layered policy generation and management engine for semantic policy mapping in clouds
6
作者 Faraz Fatemi Moghaddam Philipp Wieder Ramin Yahyapour 《Digital Communications and Networks》 SCIE 2020年第1期38-50,共13页
The long awaited cloud computing concept is a reality now due to the transformation of computer generations.However,security challenges have become the biggest obstacles for the advancement of this emerging technology... The long awaited cloud computing concept is a reality now due to the transformation of computer generations.However,security challenges have become the biggest obstacles for the advancement of this emerging technology.A well-established policy framework is defined in this paper to generate security policies which are compliant to requirements and capabilities.Moreover,a federated policy management schema is introduced based on the policy definition framework and a multi-level policy application to create and manage virtual clusters with identical or common security levels.The proposed model consists in the design of a well-established ontology according to security mechanisms,a procedure which classifies nodes with common policies into virtual clusters,a policy engine to enhance the process of mapping requests to a specific node as well as an associated cluster and matchmaker engine to eliminate inessential mapping processes.The suggested model has been evaluated according to performance and security parameters to prove the efficiency and reliability of this multilayered engine in cloud computing environments during policy definition,application and mapping procedures. 展开更多
关键词 cloud computing Security Security management Policy management Access control Policy mapping
在线阅读 下载PDF
Formula for calculating spatial similarity degrees between point clouds on multi-scale maps taking map scale change as the only independent variable 被引量:6
7
作者 Yang Weifang Yan Haowen Li Jonathan 《Geodesy and Geodynamics》 2015年第2期113-125,共13页
The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity d... The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity degree/relation in multi-scale map spaces and then proposes a model for calculating the degree of spatial similarity between a point cloud at one scale and its gener- alized counterpart at another scale. After validation, the new model features 16 points with map scale change as the x coordinate and the degree of spatial similarity as the y coordinate. Finally, using an application for curve fitting, the model achieves an empirical formula that can calculate the degree of spatial similarity using map scale change as the sole independent variable, and vice versa. This formula can be used to automate algorithms for point feature generalization and to determine when to terminate them during the generalization. 展开更多
关键词 Spatial similarity degree map generalization map scale change Point clouds Quantitative description Spatial similarity relations Multi-scale map spaces Curve fitting method
原文传递
Enhanced Autonomous Exploration and Mapping of an Unknown Environment with the Fusion of Dual RGB-D Sensors 被引量:7
8
作者 Ningbo Yu Shirong Wang 《Engineering》 SCIE EI 2019年第1期164-172,共9页
The autonomous exploration and mapping of an unknown environment is useful in a wide range of applications and thus holds great significance. Existing methods mostly use range sensors to generate twodimensional (2D) g... The autonomous exploration and mapping of an unknown environment is useful in a wide range of applications and thus holds great significance. Existing methods mostly use range sensors to generate twodimensional (2D) grid maps. Red/green/blue-depth (RGB-D) sensors provide both color and depth information on the environment, thereby enabling the generation of a three-dimensional (3D) point cloud map that is intuitive for human perception. In this paper, we present a systematic approach with dual RGB-D sensors to achieve the autonomous exploration and mapping of an unknown indoor environment. With the synchronized and processed RGB-D data, location points were generated and a 3D point cloud map and 2D grid map were incrementally built. Next, the exploration was modeled as a partially observable Markov decision process. Partial map simulation and global frontier search methods were combined for autonomous exploration, and dynamic action constraints were utilized in motion control. In this way, the local optimum can be avoided and the exploration efficacy can be ensured. Experiments with single connected and multi-branched regions demonstrated the high robustness, efficiency, and superiority of the developed system and methods. 展开更多
关键词 AUTONOMOUS EXPLORATION Red/green/blue-depth Sensor fusion Point cloud Partial map simulation Global FRONTIER search
在线阅读 下载PDF
A Forensic Method for Efficient File Extraction in HDFS Based on Three-Level Mapping 被引量:2
9
作者 GAO Yuanzhao LI Binglong 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2017年第2期114-126,共13页
The large scale and distribution of cloud computing storage have become the major challenges in cloud forensics for file extraction. Current disk forensic methods do not adapt to cloud computing well and the forensic ... The large scale and distribution of cloud computing storage have become the major challenges in cloud forensics for file extraction. Current disk forensic methods do not adapt to cloud computing well and the forensic research on distributed file system is inadequate. To address the forensic problems, this paper uses the Hadoop distributed file system (HDFS) as a case study and proposes a forensic method for efficient file extraction based on three-level (3L) mapping. First, HDFS is analyzed from overall architecture to local file system. Second, the 3L mapping of an HDFS file from HDFS namespace to data blocks on local file system is established and a recovery method for deleted files based on 3L mapping is presented. Third, a multi-node Hadoop framework via Xen virtualization platform is set up to test the performance of the method. The results indicate that the proposed method could succeed in efficient location of large files stored across data nodes, make selective image of disk data and get high recovery rate of deleted files. 展开更多
关键词 the Hadoop distributed file system (HDFS) forensics cloud forensics three-level (3L) mapping metadata file extraction file recovery Ext4
原文传递
Some Thoughts on the Earthquake Science Experimental Site——The Underground Cloud Map
10
作者 CHEN Yong XU Yihe +1 位作者 CAI Huiteng LI Wen 《Earthquake Research in China》 CSCD 2019年第1期1-8,共8页
The Western Yunnan Earthquake Predication Test Site set up jointly by the China Earthquake Administration,the National Science Foundation Commission of America,and United States Geological Survey has played an importa... The Western Yunnan Earthquake Predication Test Site set up jointly by the China Earthquake Administration,the National Science Foundation Commission of America,and United States Geological Survey has played an important role in development of early earthquake research work in China. Due to various objective reasons, most of the predicted targets in the earthquake prediction test site have not been achieved,and the development has been hindered. In recent years, the experiment site has been reconsidered,and renamed the "Earthquake Science Experimental Site". Combined with the current development of seismology and the practical needs of disaster prevention and mitigation,we propose adding the "Underground Cloud Map"as the new direction of the experimental site. Using highly repeatable, environmentally friendly and safe airgun sources,we could send constant seismic signals,which realizes continuous monitoring of subsurface velocity changes. Utilizing the high-resolution 3-D crustal structure from ambient noise tomography,we could obtain 4-D (3-D space+1-D time) images of subsurface structures, which we termed the "Underground Cloud Map". The"Underground Cloud Map" can reflect underground velocity and stress changes,providing new means for the earthquake monitoring forecast nationwide,which promotes the conversion of experience-based earthquake prediction to physics-based prediction. 展开更多
关键词 Earthquake Science EXPERIMENTAL SITE The UNDERGROUND cloud map 4-D SEISMOLOGY Airgun
在线阅读 下载PDF
基于Map-Reduce的海量数据高效Skyline查询处理 被引量:44
11
作者 丁琳琳 信俊昌 +1 位作者 王国仁 黄山 《计算机学报》 EI CSCD 北大核心 2011年第10期1785-1796,共12页
Skyline查询已成为现今数据库和信息检索领域的研究热点之一,伴随着人类可以采集和利用的数据信息的急剧增长,使得如何处理海量数据的Skyline查询成为急需解决的问题.近年来兴起的Map-Reduce编程框架能够有效地处理基于海量数据的应用,... Skyline查询已成为现今数据库和信息检索领域的研究热点之一,伴随着人类可以采集和利用的数据信息的急剧增长,使得如何处理海量数据的Skyline查询成为急需解决的问题.近年来兴起的Map-Reduce编程框架能够有效地处理基于海量数据的应用,该文既是研究如何运用Map-Reduce编程框架解决海量数据的Skyline查询问题.在Map-Reduce框架下处理Skyline查询的直接方法是扫描整个数据集进而得到查询结果,但是在海量数据Skyline查询问题中,查询结果的数量远小于原始数据集的数据量,对此该文提出了一系列的Skyline查询算法及优化,有效地过滤掉部分不能成为Skyline查询结果的数据对象,大幅度提高了在Map-Reduce框架下处理Skyline查询的效率.大量运行在Hadoop平台上的实验验证了该文所提出的Skyline查询处理算法具有良好的有效性、准确性和可用性. 展开更多
关键词 云计算 SKYLINE查询 map-REDUCE 海量数据 HADOOP
在线阅读 下载PDF
基于Map/Reduce的改进选择算法在云计算的Web数据挖掘中的研究 被引量:13
12
作者 方少卿 周剑 张明新 《计算机应用研究》 CSCD 北大核心 2013年第2期377-379,395,共4页
针对目前在搜索方面的数据量大、搜索延迟的特点,提出了基于云计算的Web挖掘的搜索模型。采用提出的基于Map/Reduce模型的改进型算法,通过仿真实验验证了该算法的可行性,在一定程度上减少了搜索的代价,提高了搜索效率。
关键词 云计算 WEB数据挖掘 map REDUCE
在线阅读 下载PDF
基于R-树索引的Map-Reduce空间连接聚集操作 被引量:5
13
作者 刘义 陈荦 +1 位作者 景宁 熊伟 《国防科技大学学报》 EI CAS CSCD 北大核心 2013年第1期136-141,共6页
空间连接聚集是一种常用并且非常耗时的空间数据库操作,特别是在面对大规模空间数据集时,单机运行环境难以满足其对时空开销的需求,如何设计高效的面向云计算环境中的分布式空间连接聚集算法越来越受到人们关注。Map-Reduce作为云计算... 空间连接聚集是一种常用并且非常耗时的空间数据库操作,特别是在面对大规模空间数据集时,单机运行环境难以满足其对时空开销的需求,如何设计高效的面向云计算环境中的分布式空间连接聚集算法越来越受到人们关注。Map-Reduce作为云计算的核心模式受限于其扁平化的串行扫描操作模型,常被用来加速非索引的空间连接操作,现有工作尚无将Map-Reduce和R-树索引结合来处理空间连接聚集。因此,提出了基于R-树索引的Map-Reduce空间连接聚集算法(RSJA-MR)来更高效地返回连接聚集结果。提出一种分布式R-树索引结构以支持大规模空间数据的索引,RSJA-MR算法利用分布式R-树生成任务集,任务集的执行满足无依赖并行计算模式,很容易在Map-Reduce框架中进行表达。文中提出一种实时缓存策略以支持索引并发访问。实验结果表明:相比非索引的Map-Reduce连接聚集算法,在空间交叠连接聚集查询上,时间性能最少提升8%,在空间包含连接聚集查询上,时间性能最少提升近35%。 展开更多
关键词 云计算 map-REDUCE 空间连接聚集 R-树
在线阅读 下载PDF
基于Map-Reduce模型的云资源调度方法研究 被引量:9
14
作者 张恒巍 韩继红 +1 位作者 卫波 王晋东 《计算机科学》 CSCD 北大核心 2015年第8期118-123,共6页
为提高Map-Reduce模型资源调度问题的求解效能,分别考虑Map和Reduce阶段的调度过程,建立带服务质量(QoS)约束的多目标资源调度模型,并提出用于模型求解的混沌多目标粒子群算法。算法采用信息熵理论来维护非支配解集,以保持解的多样性和... 为提高Map-Reduce模型资源调度问题的求解效能,分别考虑Map和Reduce阶段的调度过程,建立带服务质量(QoS)约束的多目标资源调度模型,并提出用于模型求解的混沌多目标粒子群算法。算法采用信息熵理论来维护非支配解集,以保持解的多样性和分布均匀性;在利用Sigma方法实现快速收敛的基础上,引入混沌扰动机制,以提高种群多样性和算法全局寻优能力,避免算法陷入局部最优。实验表明,算法求解所需的迭代次数少,得到的非支配解分布均匀。Map-Reduce资源调度问题的求解过程中,在收敛性和解集的多样性方面,所提算法均明显优于传统多目标粒子群算法。 展开更多
关键词 云计算 map-REDUCE 资源调度 粒子群算法 信息熵 混沌扰动
在线阅读 下载PDF
云平台下MapGIS图件在ArcGIS中还原显示技术研究 被引量:4
15
作者 康承旭 汪新庆 +3 位作者 缪谨励 尹兆峰 谢飞 邓意媛 《测绘科学技术学报》 CSCD 北大核心 2015年第5期539-544,共6页
MapGIS和ArcGIS两个GIS平台拥有不一样的符号库及渲染表达方式,这就造成在MapGIS平台下产生的图件数据要想在ArcGIS平台中还原显示较为困难。通过分析两种GIS平台下图件数据的文件格式及图面渲染方式,在Map2Shp文件转换软件和GIS二次开... MapGIS和ArcGIS两个GIS平台拥有不一样的符号库及渲染表达方式,这就造成在MapGIS平台下产生的图件数据要想在ArcGIS平台中还原显示较为困难。通过分析两种GIS平台下图件数据的文件格式及图面渲染方式,在Map2Shp文件转换软件和GIS二次开发技术的支持下,总结了一套半自动化完成还原显示的技术流程,在实际工作中有效地解决了文件转换过程中图面渲染内容丢失、工作量大等问题。同时在云平台虚拟环境中完成该技术流程,为同一GIS平台不同版本不兼容的问题提供了解决方案,并且缩短了图面渲染的时间,从而提高了工作效率。 展开更多
关键词 mapGIS平台 ARCGIS平台 图件 云平台 还原显示 二次开发
在线阅读 下载PDF
基于MapReduce的Web日志挖掘 被引量:15
16
作者 李彬 刘莉莉 《计算机工程与应用》 CSCD 2012年第22期95-98,共4页
针对单一CPU节点的Web数据挖掘系统在挖掘Web海量数据源时存在的计算瓶颈问题,利用云计算的分布式处理和虚拟化技术优势以及蚁群算法并行性的优点,设计一种基于Map/Reduce架构的Web日志挖掘算法。为进一步验证该算法的高效性,通过搭建Ha... 针对单一CPU节点的Web数据挖掘系统在挖掘Web海量数据源时存在的计算瓶颈问题,利用云计算的分布式处理和虚拟化技术优势以及蚁群算法并行性的优点,设计一种基于Map/Reduce架构的Web日志挖掘算法。为进一步验证该算法的高效性,通过搭建Hadoop平台,利用该算法挖掘Web日志中用户的偏爱访问路径。实验结果表明,充分利用了集群系统的分布式计算能力处理大量的Web日志文件,可以大大地提高Web数据挖掘的效率。 展开更多
关键词 云计算 map/REDUCE HADOOP平台 WEB日志挖掘 蚁群算法
在线阅读 下载PDF
21世纪逐日无缝数据立方体构建方法及逐年逐季节土地覆盖和土地利用动态制图——中国智慧遥感制图iMap(China)1.0 被引量:20
17
作者 刘涵 宫鹏 《遥感学报》 EI CSCD 北大核心 2021年第1期126-147,共22页
粮食安全、高质量人居环境建设、生物多样性保护、星球健康等社会可持续发展目标和对地球系统的理解、模拟与管理都迫切需要多尺度、长时序、辐射和几何精度高且一致性强的遥感观测数据集和针对用户需求的、信息主题灵活的制图产品。但... 粮食安全、高质量人居环境建设、生物多样性保护、星球健康等社会可持续发展目标和对地球系统的理解、模拟与管理都迫切需要多尺度、长时序、辐射和几何精度高且一致性强的遥感观测数据集和针对用户需求的、信息主题灵活的制图产品。但是由于技术和成本限制,传统的遥感卫星难以提供同时具有高空间分辨率、高时间频率和高质量的观测数据。现有的制图和反演方案多是针对于单一传感器系列,难以充分挖掘和联合利用多源异构遥感大数据的信息潜力,造成观测时段和分辨率有限、时空一致性和可比性较差。因此,遥感领域迫切需要新的技术范式。本文基于前沿的云计算、人工智能、虚拟星座、时空融合重建等技术,针对现有遥感大数据特别是国产卫星数据,提出一套智慧遥感制图(iMap)框架。该框架从用户需求出发、问题驱动,能够大大改善当前遥感数据产品难以满足农林管理、国情监测、生态环境保护、防灾减灾、城市建设等用户的多样化、高精度地表监测需求的现状。在该框架的指导下,基于亚马逊云计算(AWS)高性能、高弹性、可扩展的分布式计算资源,搭建了在线实时、自动化、无服务器、端到端的遥感大数据生产链和并行制图系统,并生产了首套21世纪中国全境逐日无缝数据立方体(SDC)及逐年逐季节土地覆盖和土地利用制图产品。逐日SDC综合利用Landsat和MODIS卫星数据构建虚拟星座,并通过多源时空数据融合重建技术研制得到无云无缝、高精度的反射率产品,作为分析就绪数据(ARD),为高精度定量遥感反演和制图打下根基。基于这一SDC,完成了逐年逐季节地表制图。逐年平均精度超过80%。在制图过程中,基于多套多层土地覆盖和土地利用分类体系,运用有限样本稳定分类理论,迁移使用全季节普适样本库,采用自动机器学习(AutoML)策略集成优化多种分类器,并结合时空一致性变化检测和后处理技术。这两套制图产品证明了本文提出的智慧遥感制图框架的可行性和有效性。未来将进一步完善和发展该框架,以开放和灵活的理念,为促进中国遥感进一步发展提供新的思路。 展开更多
关键词 无缝数据立方体 逐日数据 逐季节制图 云计算 智慧遥感制图 长时序 变化监测 人工智能 时空大数据
原文传递
基于Map Reduce的序列模式挖掘算法 被引量:2
18
作者 刘栋 尉永清 薛文娟 《计算机工程》 CAS CSCD 2012年第15期43-45,共3页
传统数据挖掘算法在处理海量数据集时计算能力有限。为解决该问题,提出一种基于Map Reduce的分布式序列模式挖掘算法MR PrefixSpan。在PrefixSpan算法的基础上,对模式挖掘任务进行分割,利用Map函数处理由不同前缀得到的序列模式,并行构... 传统数据挖掘算法在处理海量数据集时计算能力有限。为解决该问题,提出一种基于Map Reduce的分布式序列模式挖掘算法MR PrefixSpan。在PrefixSpan算法的基础上,对模式挖掘任务进行分割,利用Map函数处理由不同前缀得到的序列模式,并行构造投影数据库,从而提高挖掘效率及简化搜索空间。采用Reduce函数对中间结果进行规约,得到全局序列模式。在Hadoop集群上的实验结果表明,MR PrefixSpan能减少数据库扫描时间,具有较高的并行加速比和较好的可扩展性。 展开更多
关键词 云计算 并行处理 map Reduce模型 PREFIXSPAN算法 序列模式 HADOOP平台
在线阅读 下载PDF
一种基于MapReduce的电子地图数字水印处理方法 被引量:1
19
作者 方晓乐 王倩雪 +1 位作者 陈鑫祥 吴永静 《计算机应用与软件》 CSCD 2016年第10期211-214,共4页
电子地图在互联网上发布后,可以通过数字水印技术来保护其所有者的版权。为了提高数字水印算法嵌入的执行效率,提出一种并行的电子地图数字水印嵌入法。该方法基于并优化了MapReduce编程模型,再结合一种具有高鲁棒性、基于离散余弦变换(... 电子地图在互联网上发布后,可以通过数字水印技术来保护其所有者的版权。为了提高数字水印算法嵌入的执行效率,提出一种并行的电子地图数字水印嵌入法。该方法基于并优化了MapReduce编程模型,再结合一种具有高鲁棒性、基于离散余弦变换(DCT)的数字水印法,对海量的电子地图瓦片进行并行的水印加载。最后在测试实验中表明,该方法较传统模式,提升了工作效率。 展开更多
关键词 电子地图 mapREDUCE DCT 数字水印 并行处理 云计算 海量
在线阅读 下载PDF
基于云计算的Web数据挖掘Map/Reduce算法的研究 被引量:3
20
作者 王勃 徐静 《计算机与数字工程》 2014年第7期1157-1159,1164,共4页
随着互联网技术的广泛应用,网络上处理海量数据成为网络发展的关键,论文主要介绍了基于云计算的Web数据挖掘Map/Reduce算法的研究,提出了Map/Reduce算法的模型,建立体系架构,通过实验,云计算与该算法相结合,提高了数据挖掘的效率,与计... 随着互联网技术的广泛应用,网络上处理海量数据成为网络发展的关键,论文主要介绍了基于云计算的Web数据挖掘Map/Reduce算法的研究,提出了Map/Reduce算法的模型,建立体系架构,通过实验,云计算与该算法相结合,提高了数据挖掘的效率,与计算仿真平台的以及在该平台下采用虚拟化技术对子云层进行整合,为Web Service提供服务的关键技术,最大限度的发挥了其可用性、协同性、扩展性等特点。 展开更多
关键词 云计算 WEB数据挖掘 map Reduce算法
在线阅读 下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部