期刊文献+
共找到1,179篇文章
< 1 2 59 >
每页显示 20 50 100
CloudViT:A Lightweight Ground-Based Cloud Image Classification Model with the Ability to Capture Global Features
1
作者 Daoming Wei Fangyan Ge +5 位作者 Bopeng Zhang Zhiqiang Zhao Dequan Li Lizong Xi Jinrong Hu Xin Wang 《Computers, Materials & Continua》 2025年第6期5729-5746,共18页
Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning b... Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning based model,for the types identification.However,traditional approaches such as convolutional neural networks(CNNs)encounter difficulties in capturing global contextual information.In addition,they are computationally expensive,which restricts their usability in resource-limited environments.To tackle these issues,we present the Cloud Vision Transformer(CloudViT),a lightweight model that integrates CNNs with Transformers.The integration enables an effective balance between local and global feature extraction.To be specific,CloudViT comprises two innovative modules:Feature Extraction(E_Module)and Downsampling(D_Module).These modules are able to significantly reduce the number of model parameters and computational complexity while maintaining translation invariance and enhancing contextual comprehension.Overall,the CloudViT includes 0.93×10^(6)parameters,which decreases more than ten times compared to the SOTA(State-of-the-Art)model CloudNet.Comprehensive evaluations conducted on the HBMCD and SWIMCAT datasets showcase the outstanding performance of CloudViT.It achieves classification accuracies of 98.45%and 100%,respectively.Moreover,the efficiency and scalability of CloudViT make it an ideal candidate for deployment inmobile cloud observation systems,enabling real-time cloud image classification.The proposed hybrid architecture of CloudViT offers a promising approach for advancing ground-based cloud image classification.It holds significant potential for both optimizing performance and facilitating practical deployment scenarios. 展开更多
关键词 Image classification ground-based cloud images lightweight neural networks attention mechanism deep learning vision transformer
在线阅读 下载PDF
Improving Satellite-Retrieved Cloud Base Height with Ground-Based Cloud Radar Measurements 被引量:1
2
作者 Zhonghui TAN Ju WANG +3 位作者 Jianping GUO Chao LIU Miao ZHANG Shuo MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2131-2140,共10页
Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in p... Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates. 展开更多
关键词 cloud base height passive radiometer ground-based cloud radar remote sensing
在线阅读 下载PDF
Ground-Based Cloud Using Exponential Entropy/Exponential Gray Entropy and UPSO
3
作者 吴一全 殷骏 毕硕本 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第6期599-608,共10页
Objective and accurate classification model or method of cloud image is a prerequisite for accurate weather monitoring and forecast.Thus safety of aircraft taking off and landing and air flight can be guaranteed.Thres... Objective and accurate classification model or method of cloud image is a prerequisite for accurate weather monitoring and forecast.Thus safety of aircraft taking off and landing and air flight can be guaranteed.Thresholding is a kind of simple and effective method of cloud classification.It can realize automated ground-based cloud detection and cloudage observation.The existing segmentation methods based on fixed threshold and single threshold cannot achieve good segmentation effect.Thus it is difficult to obtain the accurate result of cloud detection and cloudage observation.In view of the above-mentioned problems,multi-thresholding methods of ground-based cloud based on exponential entropy/exponential gray entropy and uniform searching particle swarm optimization(UPSO)are proposed.Exponential entropy and exponential gray entropy make up for the defects of undefined value and zero value in Shannon entropy.In addition,exponential gray entropy reflects the relative uniformity of gray levels within the cloud cluster and background cluster.Cloud regions and background regions of different gray level ranges can be distinguished more precisely using the multi-thresholding strategy.In order to reduce computational complexity of original exhaustive algorithm for multi-threshold selection,the UPSO algorithm is adopted.It can find the optimal thresholds quickly and accurately.As a result,the real-time processing of segmentation of groundbased cloud image can be realized.The experimental results show that,in comparison with the existing groundbased cloud image segmentation methods and multi-thresholding method based on maximum Shannon entropy,the proposed methods can extract the boundary shape,textures and details feature of cloud more clearly.Therefore,the accuracies of cloudage detection and morphology classification for ground-based cloud are both improved. 展开更多
关键词 detection of ground-based cloud multi-thresholding of cloud image exponential entropy exponential gray entropy uniform searching particle swarm optimization(UPSO)
在线阅读 下载PDF
Formula for calculating spatial similarity degrees between point clouds on multi-scale maps taking map scale change as the only independent variable 被引量:6
4
作者 Yang Weifang Yan Haowen Li Jonathan 《Geodesy and Geodynamics》 2015年第2期113-125,共13页
The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity d... The degree of spatial similarity plays an important role in map generalization, yet there has been no quantitative research into it. To fill this gap, this study first defines map scale change and spatial similarity degree/relation in multi-scale map spaces and then proposes a model for calculating the degree of spatial similarity between a point cloud at one scale and its gener- alized counterpart at another scale. After validation, the new model features 16 points with map scale change as the x coordinate and the degree of spatial similarity as the y coordinate. Finally, using an application for curve fitting, the model achieves an empirical formula that can calculate the degree of spatial similarity using map scale change as the sole independent variable, and vice versa. This formula can be used to automate algorithms for point feature generalization and to determine when to terminate them during the generalization. 展开更多
关键词 Spatial similarity degree map generalization map scale change Point clouds Quantitative description Spatial similarity relations Multi-scale map spaces Curve fitting method
原文传递
A modified method of discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces 被引量:14
5
作者 Keshen Zhang Wei Wu +3 位作者 Hehua Zhu Lianyang Zhang Xiaojun Li Hong Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第3期571-586,共16页
This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by... This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by normal tensor voting theory,(2)co ntraction of trace feature points,(3)connection of trace feature points,(4)linearization of trace segments,and(5)connection of trace segments.A sensitivity analysis was then conducted to identify the optimal parameters of the proposed method.Three field cases,a natural rock mass outcrop and two excavated rock tunnel surfaces,were analyzed using the proposed method to evaluate its validity and efficiency.The results show that the proposed method is more efficient and accurate than the traditional trace mapping method,and the efficiency enhancement is more robust as the number of feature points increases. 展开更多
关键词 Rock mass DISCONTINUITY Three-dimensional point clouds Trace mapping
在线阅读 下载PDF
Some Thoughts on the Earthquake Science Experimental Site——The Underground Cloud Map
6
作者 CHEN Yong XU Yihe +1 位作者 CAI Huiteng LI Wen 《Earthquake Research in China》 CSCD 2019年第1期1-8,共8页
The Western Yunnan Earthquake Predication Test Site set up jointly by the China Earthquake Administration,the National Science Foundation Commission of America,and United States Geological Survey has played an importa... The Western Yunnan Earthquake Predication Test Site set up jointly by the China Earthquake Administration,the National Science Foundation Commission of America,and United States Geological Survey has played an important role in development of early earthquake research work in China. Due to various objective reasons, most of the predicted targets in the earthquake prediction test site have not been achieved,and the development has been hindered. In recent years, the experiment site has been reconsidered,and renamed the "Earthquake Science Experimental Site". Combined with the current development of seismology and the practical needs of disaster prevention and mitigation,we propose adding the "Underground Cloud Map"as the new direction of the experimental site. Using highly repeatable, environmentally friendly and safe airgun sources,we could send constant seismic signals,which realizes continuous monitoring of subsurface velocity changes. Utilizing the high-resolution 3-D crustal structure from ambient noise tomography,we could obtain 4-D (3-D space+1-D time) images of subsurface structures, which we termed the "Underground Cloud Map". The"Underground Cloud Map" can reflect underground velocity and stress changes,providing new means for the earthquake monitoring forecast nationwide,which promotes the conversion of experience-based earthquake prediction to physics-based prediction. 展开更多
关键词 Earthquake Science EXPERIMENTAL SITE The UNDERGROUND cloud map 4-D SEISMOLOGY Airgun
在线阅读 下载PDF
Mapping High-Level Application Requirements onto Low-Level Cloud Resources
7
作者 Yih Leong Sun Terence Harmer Alan Stewart 《Journal of Software Engineering and Applications》 2012年第11期894-902,共9页
Cloud computing has created a paradigm shift that affects the way in which business applications are developed. Many business organizations use cloud infrastructures as platforms on which to deploy business applicatio... Cloud computing has created a paradigm shift that affects the way in which business applications are developed. Many business organizations use cloud infrastructures as platforms on which to deploy business applications. Increasing numbers of vendors are supplying the cloud marketplace with a wide range of cloud products. Different vendors offer cloud products in different formats. The cost structures for consuming cloud products can be complex. Finding a suitable set of cloud products that meets an application’s requirements and budget can be a challenging task. In this paper, an ontology-based resource mapping mechanism is proposed. Domain-specific ontologies are used to specify high-level application’s requirements. These are then translated into high-level infrastructure ontologies which then can be mapped onto low-level descriptions of cloud resources. Cost ontologies are proposed for cloud resources. An exemplar media transcoding and delivery service is studied in order to illustrate how high-level requirements can be modeled and mapped onto cloud resources within a budget constraint. The proposed ontologies provide an application-centric mechanism for specifying cloud requirements which can then be used for searching for suitable resources in a multi-provider cloud environment. 展开更多
关键词 cloud Computing RESOURCE mapPING cloud ONTOLOGY Cost Model
在线阅读 下载PDF
A multi-layered policy generation and management engine for semantic policy mapping in clouds
8
作者 Faraz Fatemi Moghaddam Philipp Wieder Ramin Yahyapour 《Digital Communications and Networks》 SCIE 2020年第1期38-50,共13页
The long awaited cloud computing concept is a reality now due to the transformation of computer generations.However,security challenges have become the biggest obstacles for the advancement of this emerging technology... The long awaited cloud computing concept is a reality now due to the transformation of computer generations.However,security challenges have become the biggest obstacles for the advancement of this emerging technology.A well-established policy framework is defined in this paper to generate security policies which are compliant to requirements and capabilities.Moreover,a federated policy management schema is introduced based on the policy definition framework and a multi-level policy application to create and manage virtual clusters with identical or common security levels.The proposed model consists in the design of a well-established ontology according to security mechanisms,a procedure which classifies nodes with common policies into virtual clusters,a policy engine to enhance the process of mapping requests to a specific node as well as an associated cluster and matchmaker engine to eliminate inessential mapping processes.The suggested model has been evaluated according to performance and security parameters to prove the efficiency and reliability of this multilayered engine in cloud computing environments during policy definition,application and mapping procedures. 展开更多
关键词 cloud computing Security Security management Policy management Access control Policy mapping
在线阅读 下载PDF
基于地基云图数据多维特征融合的光伏功率预测算法 被引量:1
9
作者 吐松江·卡日 吴现 +3 位作者 马小晶 雷柯松 余凯峰 司伟壮 《电力系统保护与控制》 北大核心 2025年第11期84-94,共11页
针对传统光伏功率预测算法无法获取准确云层状态信息和预测精度低等问题,提出一种基于地基云图与双流数据融合的光伏功率预测算法。首先,利用地基云图提供的精确云层状态信息,结合稠密光流法获取相邻帧图像间的时空特征与细节变化特征... 针对传统光伏功率预测算法无法获取准确云层状态信息和预测精度低等问题,提出一种基于地基云图与双流数据融合的光伏功率预测算法。首先,利用地基云图提供的精确云层状态信息,结合稠密光流法获取相邻帧图像间的时空特征与细节变化特征。其次,结合卷积神经网络(convolutional neural network,CNN)在特征提取上的优势和残差网络在模型学习中抑制信息丢失上的优势,提升预测模型对光伏功率与图像数据间长期映射关系的学习能力。此外,引入注意力机制弥补模型训练过程中关键信息利用不充分的缺陷。实验结果表明,地基云图与光流数据的加入为多云天气提供了更多时空特征。与基准模型相比,其晴天与多云情况下均方根误差(root mean squared error,RMSE)指标和平均绝对误差(mean absolute error,MAE)指标分别降低了15.50%、11.65%、4.05%与5.15%,有助于充分利用云层运动状况来实现准确可靠的光伏电站输出功率预测,提升光伏电站调度工作的及时性与准确性。 展开更多
关键词 深度学习 功率预测 地基云图 注意力机制 稠密光流算法
在线阅读 下载PDF
基于立体视觉和图像映射的路面病害全局定位 被引量:1
10
作者 高明星 张文琪 马东梅 《内蒙古农业大学学报(自然科学版)》 北大核心 2025年第1期57-65,共9页
随着全国道路里程的增加,基于图像的自动化道路检测成为研究热点。现有图像病害检测方法存在全局位置信息不明确的问题,本文提出了融合图像映射和单目立体视觉实现全局路面病害定位方法。首先进行病害图像分类与提取,同时实施图像单目... 随着全国道路里程的增加,基于图像的自动化道路检测成为研究热点。现有图像病害检测方法存在全局位置信息不明确的问题,本文提出了融合图像映射和单目立体视觉实现全局路面病害定位方法。首先进行病害图像分类与提取,同时实施图像单目三维重建得到点云模型;其次通过图像映射,以转换矩阵和缩放因子获得现实尺度的三维病害点云;在此基础上聚类病害点云,得到单一病害参数及全局位置信息;最后将位置信息与地面真值进行验证和对比。结果表明,所提方法与地面真值的平均相对误差为0.66%、平均绝对误差为2.45 cm。 展开更多
关键词 点云处理 三维重建 三维映射 定位 距离测量
原文传递
自适应网格采样点云配准算法研究
11
作者 刘茂华 赵仁龙 +2 位作者 陈杰 丰勇 赵占杰 《测绘科学》 北大核心 2025年第8期51-60,共10页
针对传统迭代最近点算法ICP进行点云匹配时对特征点初始位置高敏感性、抗噪能力弱等问题,该文提出一种基于自适应网格采样的点云配准算法。通过关键点均匀采样,建立关键点的网格拓扑关系,并以标准化的高程作为特征生成高程特征图。利用... 针对传统迭代最近点算法ICP进行点云匹配时对特征点初始位置高敏感性、抗噪能力弱等问题,该文提出一种基于自适应网格采样的点云配准算法。通过关键点均匀采样,建立关键点的网格拓扑关系,并以标准化的高程作为特征生成高程特征图。利用尺度不变特征变换算法SIFT进行特征提取和特征匹配获取同名特征点,并解算变换矩阵,完成点云的粗配准。在此基础上进行精配准完成点云的融合配准。所提出方法通过包含不同密度、不同尺度、不同传感器来源的3组数据集进行验证。结果显示,3组数据集都取得较好的配准效果,其中两组小尺度数据集的均方根误差为0.00080 m和0.00025 m,一种实际地物数据集的均方根误差为0.33167 m,配准耗时分别为3.86、3.79、802.26 s。本方法通过高程特征图间接完成点云配准,解决了法线特征计算不准确、强度特征局限于LiDAR点云等问题,为实景三维中国建设提供了研究基础。 展开更多
关键词 点云匹配 自适应 特征提取 高程特征图
原文传递
面向大范围场景的分布式激光惯性联合优化定位算法
12
作者 韩勇强 马浩泽 +3 位作者 钱宇 席静 李文杰 陈家斌 《中国惯性技术学报》 北大核心 2025年第7期654-662,共9页
针对分布式平台在大规模复杂环境定位建图时存在的卫星依赖性强、定位误差大等问题,提出一种分布式激光惯性联合优化定位算法。首先,针对卫星拒止环境下的多平台全局坐标统一问题,设计无先验信息位置初始化方法,通过基于全局特征的点云... 针对分布式平台在大规模复杂环境定位建图时存在的卫星依赖性强、定位误差大等问题,提出一种分布式激光惯性联合优化定位算法。首先,针对卫星拒止环境下的多平台全局坐标统一问题,设计无先验信息位置初始化方法,通过基于全局特征的点云融合算法实现动态环境下的坐标统一;其次,针对联合定位实时误差累积问题,提出跨平台全局回环的非线性优化方法,完成分布式传感信息的融合定位;最后,通过开源数据集与车载实验验证了所提方法的有效性。3363 m的大范围校园场景实车实验表明:所提方法能有效提升大规模、复杂环境下的定位精度,相比于DiSCo-SLAM算法,定位均方根误差与定位误差标准差分别降低18.1%和32.6%。 展开更多
关键词 联合定位 实时定位与建图 点云配准 卫星拒止
在线阅读 下载PDF
基于残差网络的有限元分析结果云图的加密方法
13
作者 董正方 代鹏翔 +3 位作者 曾繁凯 康腾奥 李运华 田林杰 《科学技术与工程》 北大核心 2025年第25期10766-10772,共7页
在有限元分析中,提高网格密度能够显著增强仿真结果的准确性,但同时也需要消耗更多的计算资源,为了解决这一矛盾,通过将Res2Net、U-Net、通道注意力机制、几何特征提取融合在一起,对低网格密度的有限元结果云图数据进行学习,预测高网格... 在有限元分析中,提高网格密度能够显著增强仿真结果的准确性,但同时也需要消耗更多的计算资源,为了解决这一矛盾,通过将Res2Net、U-Net、通道注意力机制、几何特征提取融合在一起,对低网格密度的有限元结果云图数据进行学习,预测高网格密度的有限元结果云图,从而在不牺牲精度的前提下,减少所需的计算成本。模型通过在2倍、4倍和8倍等不同尺度条件下进行实验,在测试数据上的均方误差和平均绝对误差都有显著降低,充分证明了模型在数值预测准确性方面的卓越表现,结果表明,在较少的计算资源投入下,在保证输出结果的高精度下,可利用此模型进行有限元结果云图的加密。 展开更多
关键词 有限元分析 结果云图 Res2Net残差网络 跳跃连接 注意力机制
在线阅读 下载PDF
基于自适应面元配准的激光-惯性SLAM算法
14
作者 徐晓苏 张家赫 《中国惯性技术学报》 北大核心 2025年第6期587-595,共9页
激光-惯性同时定位与建图(SLAM)在自动驾驶与机器人导航中具有广泛应用,但传统点云配准方法在处理大规模室外数据时存在效率低和精度不足的问题。为此,提出一种基于自适应面元配准的激光-惯性SLAM方法。通过动态调整面元大小以适应不同... 激光-惯性同时定位与建图(SLAM)在自动驾驶与机器人导航中具有广泛应用,但传统点云配准方法在处理大规模室外数据时存在效率低和精度不足的问题。为此,提出一种基于自适应面元配准的激光-惯性SLAM方法。通过动态调整面元大小以适应不同环境特征,并利用自适应面元构建地图和配准,优化了配准过程。实验结果表明,与基于点云地图配准的方法相比,所提方法显著提高了配准精度并增强了系统鲁棒性。在KITTI数据集上,与Le GO-LOAM和LIO-SAM相比,平均定位误差分别降低约47.8%和39.1%;在实测实验中,相较于Le GO-LOAM、LIO-SAM及Fast-LIO2,平均定位误差分别降低约45.9%、34.4%和56.3%。 展开更多
关键词 激光-惯性SLAM 点云配准 面元地图
在线阅读 下载PDF
慢性疾病健康问答系统的构建方法
15
作者 康冰 段纪鲁 卢辉遒 《吉林大学学报(信息科学版)》 2025年第4期801-806,共6页
针对患者长期健康知识需求与自主管理困难的问题,为提高慢性疾病患者医疗信息获取的准确性与便捷性,开发了一套基于知识图谱与微信小程序的慢性疾病健康知识问答系统。该系统包括问答库、服务器端、客户端3部分。问答库基于知识图谱、... 针对患者长期健康知识需求与自主管理困难的问题,为提高慢性疾病患者医疗信息获取的准确性与便捷性,开发了一套基于知识图谱与微信小程序的慢性疾病健康知识问答系统。该系统包括问答库、服务器端、客户端3部分。问答库基于知识图谱、文本生成与匹配技术构建,服务器端基于Python语言编写,使用微信小程序作为客户端。系统具有对疾病知识进行智能问答、健康数据记录、健康推文、知识库更新功能。应用结果表明,该系统能良好地完成慢性病人的健康知识问答任务。 展开更多
关键词 知识图谱 慢性疾病 PYTHON语言 小程序 云端通信
在线阅读 下载PDF
动态场景优化ORB-SLAM3算法
16
作者 徐淑萍 杨定哲 +1 位作者 房嘉翔 蒋硕 《中国惯性技术学报》 北大核心 2025年第10期998-1007,共10页
针对动态场景中移动物体引发的机器人位姿估计偏差及地图构建不完善问题,提出一种动态场景优化ORB-SLAM3算法。首先通过改进的YOLOv5s算法检测动态物体并初步剔除关联特征点,随后联合LK光流跟踪与基于基本矩阵的极线几何约束分析,进一... 针对动态场景中移动物体引发的机器人位姿估计偏差及地图构建不完善问题,提出一种动态场景优化ORB-SLAM3算法。首先通过改进的YOLOv5s算法检测动态物体并初步剔除关联特征点,随后联合LK光流跟踪与基于基本矩阵的极线几何约束分析,进一步滤除漏检的动态特征点,从而提升环境感知与位姿估计精度。同时,通过滤除动态信息的关键帧生成对应的点云信息,实现三维稠密静态地图构建。室内动态场景下的测试结果表明:相较于传统ORB-SLAM3,所提算法的绝对轨迹误差和相对位姿误差在办公室环境下分别减小55.2%和93.7%,走廊场景中分别减小24.3%和40.2%,验证了其在动态场景中的鲁棒性优势。 展开更多
关键词 改进YOLOv5s LK光流 极线约束 三维稠密点云地图
在线阅读 下载PDF
基于动态点去除的激光雷达SLAM算法
17
作者 李擎 林世杰 +2 位作者 贺晓东 武雨田 谭朝 《工程科学学报》 北大核心 2025年第10期2070-2078,共9页
同时定位与建图(Simultaneous localization and mapping,SLAM)能够在未知环境中构建地图并为机器人提供定位信息,是移动机器人领域重要研究方向之一.当前,大多数SLAM算法在静态环境中有较好的表现,但是在车辆和行人等运动物体较多的环... 同时定位与建图(Simultaneous localization and mapping,SLAM)能够在未知环境中构建地图并为机器人提供定位信息,是移动机器人领域重要研究方向之一.当前,大多数SLAM算法在静态环境中有较好的表现,但是在车辆和行人等运动物体较多的环境中,广泛存在的动态点使激光点云前后帧的配准精度不高,降低了动态场景下定位和建图的准确性.针对激光点云中存在动态点的问题,本文对SLAM的前端特征提取及后端回环检测模块分别进行改进,以去除动态点,提升SLAM在动态环境下的性能.针对SLAM前端,提出了一种分步的地面分割方法,依据点云高度信息完成地面点粗提取以矫正点云,再使用随机采样一致性方法对矫正后的点云进行精细的地面分割,最后根据高度阈值采用种子生长聚类方法提取非地面动态点,并进行特征提取与配准;针对SLAM后端,使用点云描述子替代传统方法中基于空间位置关系的回环检测方法,以减小累计误差、提高回环检测灵敏度.实验结果显示,本方法在M2DGR street_08序列数据集上较现有方法均方根误差最大降低29.8%,在KITTI04序列数据集上均方根误差最大降幅达42.7%,说明本方法能有效增强动态环境下SLAM系统的全局一致性与定位精度. 展开更多
关键词 同时定位与建图 动态点去除 地面分割 点云配准 回环检测
在线阅读 下载PDF
融合手持三维激光和倾斜摄影数据的既有建筑现状测绘方法及应用分析
18
作者 杜顺季 陈思如 赵新科 《测绘通报》 北大核心 2025年第S1期185-190,共6页
既有建筑的权属补充登记是近几年城市测绘的重点任务,但多数既有建筑存在缺失竣工图等问题,须开展现状测绘并绘制建筑现状图。目前主要采用全站仪等传统手段,存在效率低、可视化差、数据单一等不足。针对既有建筑权属登记与改造需求,提... 既有建筑的权属补充登记是近几年城市测绘的重点任务,但多数既有建筑存在缺失竣工图等问题,须开展现状测绘并绘制建筑现状图。目前主要采用全站仪等传统手段,存在效率低、可视化差、数据单一等不足。针对既有建筑权属登记与改造需求,提出手持三维激光点云与倾斜摄影模型融合的现状测绘方法。实例验证,平面中误差小于5 cm,满足房产测绘和建筑方案设计要求,作业效率提高3倍,可操作性强,为存量建筑测绘提供高效解决方案。 展开更多
关键词 手持三维激光扫描 倾斜摄影测量 点云融合 既有建筑测绘 精度分析
原文传递
基于点云聚类的隧道变形检测方法研究
19
作者 穆莉莉 王天棋 +1 位作者 杨紫威 曾忱 《黑龙江工业学院学报(综合版)》 2025年第3期109-116,共8页
针对隧道变形人工勘测效率低的弊端,利用深度相机重构隧道三维模型,并提出一种点云轨迹切片的Cloud-to-Cloud获取变形的新方法。针对切片后的配准点云邻近点距离变化,点云聚类处理后计算获得隧道变形位置及变形量。使用模拟隧道验证算... 针对隧道变形人工勘测效率低的弊端,利用深度相机重构隧道三维模型,并提出一种点云轨迹切片的Cloud-to-Cloud获取变形的新方法。针对切片后的配准点云邻近点距离变化,点云聚类处理后计算获得隧道变形位置及变形量。使用模拟隧道验证算法的可行性,进行了实例分析。结果表明,基于点云聚类分析的变形检测算法,能够有效的定位变形区域的空间位置。变形定位精度小于15mm,变形检测成功率99%,估算体积误差小于7.72%,检测分辨率为10mm,为隧道相对变形检测提供了一种新的方法。 展开更多
关键词 即时定位与地图构建 隧道 轨迹路径 点云切片 变形检测 聚类
在线阅读 下载PDF
云计算环境下的虚拟机安全性分析与改进
20
作者 梁西陈 《集宁师范学院学报》 2025年第3期83-88,共6页
虚拟机集成网络中存在多条内存映射机制,随着数据存储量的增大,网络体系的安全性难以得到有效保障。为解决上述问题,针对云计算环境下的虚拟机安全性分析与改进方法展开研究。在SPP型云计算体系中,确定虚拟机数据的云共享身份,在此基础... 虚拟机集成网络中存在多条内存映射机制,随着数据存储量的增大,网络体系的安全性难以得到有效保障。为解决上述问题,针对云计算环境下的虚拟机安全性分析与改进方法展开研究。在SPP型云计算体系中,确定虚拟机数据的云共享身份,在此基础上,建立数据访问的双线性映射关系,实现云计算环境下虚拟机数据的安全共享与访问控制。针对Xen内存实施虚拟化处理,并根据虚拟机数据的安全内存距离,构建Flask安全加固结构,完成虚拟机集成网络加固方案的设计。实验结果表明,虚拟机网络信道内数据信息的传输速率始终保持较为稳定的状态,且数据库主机对虚拟数据样本的存储能力大幅增强,集成网络体系的安全性能够得到有效保障。 展开更多
关键词 云计算 虚拟机安全性 双线性映射 Xen内存 安全内存距离 Flask加固结构
在线阅读 下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部