期刊文献+
共找到9,928篇文章
< 1 2 250 >
每页显示 20 50 100
A Meta-Advance of Bacillus-Mediated Biosurfactant Augmentation in the Chikwangue Composition
1
作者 Nedjea Digne N’goma-Mona Christian Aimé Kayath +1 位作者 Saturnin Nicaise Mokemiabeka Frédéric Yannick Okouakoua 《Advances in Microbiology》 2025年第2期92-111,共20页
Cassava is the most widely distributed food crop in Central Africa. Chikwangue, also known as kwanga in the Republic of Congo, is a starchy fermented cassava product that is a staple food in the country. This work aim... Cassava is the most widely distributed food crop in Central Africa. Chikwangue, also known as kwanga in the Republic of Congo, is a starchy fermented cassava product that is a staple food in the country. This work aims to determine the composition of bioactive compounds in chikwangue, including biosurfactant-like molecules and proteins content. Antibacterial activities were investigated through the preliminary emulsification index of chikwangue and fermented paste. Antibacterial assay, 16S rRNA, cytK, hblD, nheB and entFM PCR amplifications, DNA sequence analysis, NCBI homology analysis, and phylogenic tree were performed using NGPhylogeny. fr and iTOL (interactive of live). Fermented cassava paste and chikwangue contain biosurfactants with an emulsification index of 50%. The total protein concentration in fermented cassava paste was 4 g/ml and the chikwangue was 2.5 g/mL Further sequence analysis showed that isolates shared a homology of up to 99.9% with Bacillus cereus PQ432941.1, B. licheniformis PQ432758.1, B. altitudinis PQ432754.1, B. subtilis PQ432759.1, B. mojavensis PQ432755.1, B. tequilensis MT994788.1, B. subtilis MT994789.1, Paenibacillus polymyxa PQ452544.1, B. velezensis PQ452545.1, B. thuringiensis PQ432763.1, B. pumilus PQ432762.1, B. subtilis MT994787.1, B. mycoides PQ432890.1, B. thuringiensis PQ432766.1, B. subtilis PQ432757.1 and B. amyloliquefaciens PQ432756.1. Importantly, the emulsification index (E24) ranged from 60 to 100% and the crude biosurfactant for the Bacillus strains mentioned above could easily inhibit the growth for pathogen Gram-negative bacteria (S. enterica, S. flexneri, E. coli, Klebsiella sp. and P. aeruginosa) with diameters ranging from 2.3 ± 0.1 cm to 5.5 ± 0.4 cm. On the other hand, the diameters of Gram-positive pathogenic bacteria (B. cereus and S. aureus) varied between 1.5 ± 0.5 cm and 4.0 ± 0.2 cm. These findings involve the promise purpose of Bacillus isolated from retted cassava, and this study systematically uncovered the biodiversity and distribution characteristics of retted paste cassava and chikwangue. 展开更多
关键词 BACILLUS augmentation BIOSURFACTANT PROTEINS
在线阅读 下载PDF
Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks 被引量:1
2
作者 Afshin Tatar Manouchehr Haghighi Abbas Zeinijahromi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期106-125,共20页
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist... The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications. 展开更多
关键词 Deep learning(DL) Image analysis Image data augmentation Convolutional neural networks(CNNs) Geological image analysis Rock classification Rock thin section(RTS)images
在线阅读 下载PDF
Comparison of Reflectivity Consistency between Spaceborne Precipitation Radar and Ground-based Weather Radar in China and the United States
3
作者 Peng CHEN Lin CHEN +3 位作者 Gang WANG Qiong WU Huiying WANG Peng ZHANG 《Advances in Atmospheric Sciences》 2025年第7期1376-1394,共19页
The Global Precipitation Measurement(GPM)dual-frequency precipitation radar(DPR)products(Version 07A)are employed for a rigorous comparative analysis with ground-based operational weather radar(GR)networks.The reflect... The Global Precipitation Measurement(GPM)dual-frequency precipitation radar(DPR)products(Version 07A)are employed for a rigorous comparative analysis with ground-based operational weather radar(GR)networks.The reflectivity observed by GPM Ku PR is compared quantitatively against GR networks from CINRAD of China and NEXRAD of the United States,and the volume matching method is used for spatial matching.Additionally,a novel frequency correction method for all phases as well as precipitation types is used to correct the GPM Ku PR radar frequency to the GR frequency.A total of 20 GRs(including 10 from CINRAD and 10 from NEXRAD)are included in this comparative analysis.The results indicate that,compared with CINRAD matched data,NEXRAD exhibits larger biases in reflectivity when compared with the frequency-corrected Ku PR.The root-mean-square difference for CINRAD is calculated at 2.38 d B,whereas for NEXRAD it is 3.23 d B.The mean bias of CINRAD matched data is-0.16 d B,while the mean bias of NEXRAD is-2.10 d B.The mean standard deviation of bias for CINRAD is 2.15 d B,while for NEXRAD it is 2.29 d B.This study effectively assesses weather radar data in both the United States and China,which is crucial for improving the overall consistency of global precipitation estimates. 展开更多
关键词 GPM DPR volume matching REFLECTIVITY ground-based radar
在线阅读 下载PDF
CloudViT:A Lightweight Ground-Based Cloud Image Classification Model with the Ability to Capture Global Features
4
作者 Daoming Wei Fangyan Ge +5 位作者 Bopeng Zhang Zhiqiang Zhao Dequan Li Lizong Xi Jinrong Hu Xin Wang 《Computers, Materials & Continua》 2025年第6期5729-5746,共18页
Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning b... Accurate cloud classification plays a crucial role in aviation safety,climate monitoring,and localized weather forecasting.Current research has been focusing on machine learning techniques,particularly deep learning based model,for the types identification.However,traditional approaches such as convolutional neural networks(CNNs)encounter difficulties in capturing global contextual information.In addition,they are computationally expensive,which restricts their usability in resource-limited environments.To tackle these issues,we present the Cloud Vision Transformer(CloudViT),a lightweight model that integrates CNNs with Transformers.The integration enables an effective balance between local and global feature extraction.To be specific,CloudViT comprises two innovative modules:Feature Extraction(E_Module)and Downsampling(D_Module).These modules are able to significantly reduce the number of model parameters and computational complexity while maintaining translation invariance and enhancing contextual comprehension.Overall,the CloudViT includes 0.93×10^(6)parameters,which decreases more than ten times compared to the SOTA(State-of-the-Art)model CloudNet.Comprehensive evaluations conducted on the HBMCD and SWIMCAT datasets showcase the outstanding performance of CloudViT.It achieves classification accuracies of 98.45%and 100%,respectively.Moreover,the efficiency and scalability of CloudViT make it an ideal candidate for deployment inmobile cloud observation systems,enabling real-time cloud image classification.The proposed hybrid architecture of CloudViT offers a promising approach for advancing ground-based cloud image classification.It holds significant potential for both optimizing performance and facilitating practical deployment scenarios. 展开更多
关键词 Image classification ground-based cloud images lightweight neural networks attention mechanism deep learning vision transformer
在线阅读 下载PDF
Data augmentation method for light guide plate based on improved CycleGAN
5
作者 GONG Yefei YAN Chao +2 位作者 XIAO Ming LU Mingli GAO Hua 《Optoelectronics Letters》 2025年第9期555-561,共7页
An improved cycle-consistent generative adversarial network(CycleGAN) method for defect data augmentation based on feature fusion and self attention residual module is proposed to address the insufficiency of defect s... An improved cycle-consistent generative adversarial network(CycleGAN) method for defect data augmentation based on feature fusion and self attention residual module is proposed to address the insufficiency of defect sample data for light guide plate(LGP) in production,as well as the problem of minor defects.Two optimizations are made to the generator of CycleGAN:fusion of low resolution features obtained from partial up-sampling and down-sampling with high-resolution features,combination of self attention mechanism with residual network structure to replace the original residual module.Qualitative and quantitative experiments were conducted to compare different data augmentation methods,and the results show that the defect images of the LGP generated by the improved network were more realistic,and the accuracy of the you only look once version 5(YOLOv5) detection network for the LGP was improved by 5.6%,proving the effectiveness and accuracy of the proposed method. 展开更多
关键词 feature fusion self attention mec data augmentation light guide plate lgp cyclegan fusion low resolution features defect data augmentation self attention residual module minor defectstwo
原文传递
A target imaging simulation method for ground-based system based on signal-to-noise ratio
6
作者 Chunxu Ren Yun Li +3 位作者 Yanzhao Li Weihua Gao Wenlong Niu Xiaodong Peng 《Astronomical Techniques and Instruments》 2025年第5期288-298,共11页
Space target imaging simulation technology is an important tool for space target detection and identification,with advantages that include high flexibility and low cost.However,existing space target imaging simulation... Space target imaging simulation technology is an important tool for space target detection and identification,with advantages that include high flexibility and low cost.However,existing space target imaging simulation technologies are mostly based on target magnitudes for simulations,making it difficult to meet image simulation requirements for different signal-to-noise ratio(SNR)needs.Therefore,design of a simulation method that generates target image sequences with various SNRs based on the optical detection system parameters will be important for faint space target detection research.Addressing the SNR calculation issue in optical observation systems,this paper proposes a ground-based detection image SNR calculation method using the optical system parameters.This method calculates the SNR of an observed image precisely using radiative transfer theory,the optical system parameters,and the observation environment parameters.An SNR-based target sequence image simulation method for ground-based detection scenarios is proposed.This method calculates the imaging SNR using the optical system parameters and establishes a model for conversion between the target’s apparent magnitude and image grayscale values,thereby enabling generation of target sequence simulation images with corresponding SNRs for different system parameters.Experiments show that the SNR obtained using this calculation method has an average calculation error of<1 dB when compared with the theoretical SNR of the actual optical system.Additionally,the simulation images generated by the imaging simulation method show high consistency with real images,which meets the requirements of faint space target detection algorithm research and provides reliable data support for development of related technologies. 展开更多
关键词 Image SNR calculation Imaging simulation ground-based optical detection system Space target image sequence
在线阅读 下载PDF
The outcomes of magnetic sphincter augmentation in patients with gastroesophageal reflux disease post bariatric surgery:A systemic review and meta-analysis
7
作者 Turki Alkully Sara Mahfoud Alghamdi +4 位作者 Najla Khalid A.Alzahrani Raghad Saeed S.Alghamdi Sarah Ibrahim Alghamdi Hassan Mahfouz H.Alghamdi Afaf Safar E.Alzahrani 《Laparoscopic, Endoscopic and Robotic Surgery》 2025年第1期45-52,共8页
Objective:Although bariatric surgeries are widely performed around the world,patients frequently experience the recurrence of pre-existing gastroesophageal reflux disease(GERD)symptoms or develop new symptoms,some of ... Objective:Although bariatric surgeries are widely performed around the world,patients frequently experience the recurrence of pre-existing gastroesophageal reflux disease(GERD)symptoms or develop new symptoms,some of which are resistant to medical treatment.This study investigates the effect and outcome of magnetic sphincter augmentation(MSA),a minimally invasive treatment for GERD,in this population.Methods:A thorough search of the PubMed,Cochrane,Scopus,Web of Science,and Google Scholar databases from inception until June 6,2024 was performed to retrieve relevant studies that evaluated the effects of MSA on the GERD health-related quality of life(GERD-HRQL)score and the reduction in proton pump inhibitor(PPI)use in patients who underwent bariatric surgery.The“meta”package in RStudio version 2023.12.0 t 369 was used.Results:A total of eight studies were included in the systematic review and seven studies were included in the meta-analysis.MSA significantly reduced the GERD-HRQL score(MD?27.55[95%CI:30.99 to24.11],p<0.01)and PPI use(RR?0.23[95%CI:0.16 to 0.33],p<0.01).Conclusion:MSA is a viable treatment option for patients with GERD symptoms who undergo bariatric surgery.This approach showed promising results in terms of reducing the GERD-HRQL score and reducing the use of PPI. 展开更多
关键词 BARIATRIC Sleeve gastrectomy Magnetic sphincter augmentation Gastroesophageal reflux
原文传递
Breast augmentation complications with three planes of implant placements
8
作者 Haibo Zhao Nienwei Liu +1 位作者 Zeren Shen Jinghong Xu 《Chinese Journal of Plastic and Reconstructive Surgery》 2025年第1期45-48,共4页
Breast augmentation with implants is a popular cosmetic surgery that enhances breast volume and contour through various placement planes.In this review,we examine the impact of subglandular,subpectoral,and subfascial ... Breast augmentation with implants is a popular cosmetic surgery that enhances breast volume and contour through various placement planes.In this review,we examine the impact of subglandular,subpectoral,and subfascial implant planes on postoperative outcomes and complication rates.Subglandular placement offers simplicity but is associated with higher risks of capsular contracture,hematoma,and rippling in patients with low tissue coverage.The subpectoral plane,widely adopted for its natural appearance and reduced capsular contracture risk,may cause dynamic deformity due to muscle contraction.Although technically challenging,the subfascial plane combines the benefits of soft tissue support and reduced implant displacement.We highlight the importance of choosing an optimal implant plane tailored to each patient’s anatomical and aesthetic needs to enhance surgical outcomes and minimize complications.Further research is needed to validate long-term efficacy,particularly for subfascial placement. 展开更多
关键词 Breast augmentation Implant placement planes Capsular contracture Postoperative complications
暂未订购
Bird Species Classification Using Image Background Removal for Data Augmentation
9
作者 Yu-Xiang Zhao Yi Lee 《Computers, Materials & Continua》 2025年第7期791-810,共20页
Bird species classification is not only a challenging topic in artificial intelligence but also a domain closely related to environmental protection and ecological research.Additionally,performing edge computing on lo... Bird species classification is not only a challenging topic in artificial intelligence but also a domain closely related to environmental protection and ecological research.Additionally,performing edge computing on low-level devices using small neural networks can be an important research direction.In this paper,we use the EfficientNetV2B0 model for bird species classification,applying transfer learning on a dataset of 525 bird species.We also employ the BiRefNet model to remove backgrounds from images in the training set.The generated background-removed images are mixed with the original training set as a form of data augmentation.We aim for these background-removed images to help the model focus on key features,and by combining data augmentation with transfer learning,we trained a highly accurate and efficient bird species classification model.The training process is divided into a transfer learning stage and a fine-tuning stage.In the transfer learning stage,only the newly added custom layers are trained;while in the fine-tuning stage,all pre-trained layers except for the batch normalization layers are fine-tuned.According to the experimental results,the proposed model not only has an advantage in size compared to other models but also outperforms them in various metrics.The training results show that the proposed model achieved an accuracy of 99.54%and a precision of 99.62%,demonstrating that it achieves both lightweight design and high accuracy.To confirm the credibility of the results,we use heatmaps to interpret the model.The heatmaps show that our model can clearly highlight the image feature area.In addition,we also perform the 10-fold cross-validation on the model to verify its credibility.Finally,this paper proposes a model with low training cost and high accuracy,making it suitable for deployment on edge computing devices to provide lighter and more convenient services. 展开更多
关键词 Bird species classification edge computing EfficientNet BiRefNet data augmentation
在线阅读 下载PDF
Advancing predictive accuracy of shallow landslide using strategic data augmentation
10
作者 Hongzhi Qiu Xiaoqing Chen +4 位作者 Peng Feng Renchao Wang Wang Hu Liping Zhang Alessandro Pasuto 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4273-4287,共15页
Rainfall-induced shallow landslides pose one of significant geological hazards,necessitating precise monitoring and prediction for effective disaster mitigation.Most studies on landslide prediction have focused on opt... Rainfall-induced shallow landslides pose one of significant geological hazards,necessitating precise monitoring and prediction for effective disaster mitigation.Most studies on landslide prediction have focused on optimizing machine learning(ML)algorithms,very limited attention has been paid to enhancing data quality for improved predictive performance.This study employs strategic data augmentation(DA)techniques to enhance the accuracy of shallow landslide prediction.Using five DA methods including singular spectrum analysis(SSA),moving averages(MA),wavelet denoising(WD),variational mode decomposition(VMD),and linear interpolation(LI),we utilize strategies such as smoothing,denoising,trend decomposition,and synthetic data generation to improve the training dataset.Four machine learning algorithms,i.e.artificial neural network(ANN),recurrent neural network(RNN),one-dimensional convolutional neural network(CNN1D),and long short-term memory(LSTM),are used to forecast landslide displacement.The case study of a landslide in southwest China shows the effectiveness of our approach in predicting landslide displacements,despite the inherent limitations of the monitoring dataset.VMD proves the most effective for smoothing and denoising,improving R^(2),RMSE,and MAPE by 172.16%,71.82%,and 98.9%,respectively.SSA addresses missing data,while LI is effective with limited data samples,improving metrics by 21.6%,52.59%,and 47.87%,respectively.This study demonstrates the potential of DA techniques to mitigate the impact of data defects on landslide prediction accuracy,with implications for similar cases. 展开更多
关键词 Shallow landslide Data augmentation Machine learning Neural network Deformation prediction
在线阅读 下载PDF
Salient Features Guided Augmentation for Enhanced Deep Learning Classification in Hematoxylin and Eosin Images
11
作者 Tengyue Li Shuangli Song +6 位作者 Jiaming Zhou Simon Fong Geyue Li Qun Song Sabah Mohammed Weiwei Lin Juntao Gao 《Computers, Materials & Continua》 2025年第7期1711-1730,共20页
Hematoxylin and Eosin(H&E)images,popularly used in the field of digital pathology,often pose challenges due to their limited color richness,hindering the differentiation of subtle cell features crucial for accurat... Hematoxylin and Eosin(H&E)images,popularly used in the field of digital pathology,often pose challenges due to their limited color richness,hindering the differentiation of subtle cell features crucial for accurate classification.Enhancing the visibility of these elusive cell features helps train robust deep-learning models.However,the selection and application of image processing techniques for such enhancement have not been systematically explored in the research community.To address this challenge,we introduce Salient Features Guided Augmentation(SFGA),an approach that strategically integrates machine learning and image processing.SFGA utilizes machine learning algorithms to identify crucial features within cell images,subsequently mapping these features to appropriate image processing techniques to enhance training images.By emphasizing salient features and aligning them with corresponding image processing methods,SFGA is designed to enhance the discriminating power of deep learning models in cell classification tasks.Our research undertakes a series of experiments,each exploring the performance of different datasets and data enhancement techniques in classifying cell types,highlighting the significance of data quality and enhancement in mitigating overfitting and distinguishing cell characteristics.Specifically,SFGA focuses on identifying tumor cells from tissue for extranodal extension detection,with the SFGA-enhanced dataset showing notable advantages in accuracy.We conducted a preliminary study of five experiments,among which the accuracy of the pleomorphism experiment improved significantly from 50.81%to 95.15%.The accuracy of the other four experiments also increased,with improvements ranging from 3 to 43 percentage points.Our preliminary study shows the possibilities to enhance the diagnostic accuracy of deep learning models and proposes a systematic approach that could enhance cancer diagnosis,contributing as a first step in using SFGA in medical image enhancement. 展开更多
关键词 Image processing feature extraction deep learning machine learning data augmentation
在线阅读 下载PDF
Pre-trained SAM as data augmentation for image segmentation
12
作者 Junjun Wu Yunbo Rao +1 位作者 Shaoning Zeng Bob Zhang 《CAAI Transactions on Intelligence Technology》 2025年第1期268-282,共15页
Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in ord... Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in order to increase the diversity and complexity of data,more advanced methods appeared and evolved to sophisticated generative models.However,these methods required a mass of computation of training or searching.In this paper,a novel training-free method that utilises the Pre-Trained Segment Anything Model(SAM)model as a data augmentation tool(PTSAM-DA)is proposed to generate the augmented annotations for images.Without the need for training,it obtains prompt boxes from the original annotations and then feeds the boxes to the pre-trained SAM to generate diverse and improved annotations.In this way,annotations are augmented more ingenious than simple manipulations without incurring huge computation for training a data augmentation model.Multiple comparative experiments on three datasets are conducted,including an in-house dataset,ADE20K and COCO2017.On this in-house dataset,namely Agricultural Plot Segmentation Dataset,maximum improvements of 3.77%and 8.92%are gained in two mainstream metrics,mIoU and mAcc,respectively.Consequently,large vision models like SAM are proven to be promising not only in image segmentation but also in data augmentation. 展开更多
关键词 data augmentation image segmentation large model segment anything model
在线阅读 下载PDF
Multi-sensor missile-borne LiDAR point cloud data augmentation based on Monte Carlo distortion simulation
13
作者 Luda Zhao Yihua Hu +4 位作者 Fei Han Zhenglei Dou Shanshan Li Yan Zhang Qilong Wu 《CAAI Transactions on Intelligence Technology》 2025年第1期300-316,共17页
Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmenta... Large-scale point cloud datasets form the basis for training various deep learning networks and achieving high-quality network processing tasks.Due to the diversity and robustness constraints of the data,data augmentation(DA)methods are utilised to expand dataset diversity and scale.However,due to the complex and distinct characteristics of LiDAR point cloud data from different platforms(such as missile-borne and vehicular LiDAR data),directly applying traditional 2D visual domain DA methods to 3D data can lead to networks trained using this approach not robustly achieving the corresponding tasks.To address this issue,the present study explores DA for missile-borne LiDAR point cloud using a Monte Carlo(MC)simulation method that closely resembles practical application.Firstly,the model of multi-sensor imaging system is established,taking into account the joint errors arising from the platform itself and the relative motion during the imaging process.A distortion simulation method based on MC simulation for augmenting missile-borne LiDAR point cloud data is proposed,underpinned by an analysis of combined errors between different modal sensors,achieving high-quality augmentation of point cloud data.The effectiveness of the proposed method in addressing imaging system errors and distortion simulation is validated using the imaging scene dataset constructed in this paper.Comparative experiments between the proposed point cloud DA algorithm and the current state-of-the-art algorithms in point cloud detection and single object tracking tasks demonstrate that the proposed method can improve the network performance obtained from unaugmented datasets by over 17.3%and 17.9%,surpassing SOTA performance of current point cloud DA algorithms. 展开更多
关键词 data augmentation LIDAR missile-borne imaging Monte Carlo simulation point cloud
在线阅读 下载PDF
Syn-Aug:An Effective and General Synchronous Data Augmentation Framework for 3D Object Detection
14
作者 Huaijin Liu Jixiang Du +2 位作者 Yong Zhang Hongbo Zhang Jiandian Zeng 《CAAI Transactions on Intelligence Technology》 2025年第3期912-928,共17页
Data augmentation plays an important role in boosting the performance of 3D models,while very few studies handle the 3D point cloud data with this technique.Global augmentation and cut-paste are commonly used augmenta... Data augmentation plays an important role in boosting the performance of 3D models,while very few studies handle the 3D point cloud data with this technique.Global augmentation and cut-paste are commonly used augmentation techniques for point clouds,where global augmentation is applied to the entire point cloud of the scene,and cut-paste samples objects from other frames into the current frame.Both types of data augmentation can improve performance,but the cut-paste technique cannot effectively deal with the occlusion relationship between the foreground object and the background scene and the rationality of object sampling,which may be counterproductive and may hurt the overall performance.In addition,LiDAR is susceptible to signal loss,external occlusion,extreme weather and other factors,which can easily cause object shape changes,while global augmentation and cut-paste cannot effectively enhance the robustness of the model.To this end,we propose Syn-Aug,a synchronous data augmentation framework for LiDAR-based 3D object detection.Specifically,we first propose a novel rendering-based object augmentation technique(Ren-Aug)to enrich training data while enhancing scene realism.Second,we propose a local augmentation technique(Local-Aug)to generate local noise by rotating and scaling objects in the scene while avoiding collisions,which can improve generalisation performance.Finally,we make full use of the structural information of 3D labels to make the model more robust by randomly changing the geometry of objects in the training frames.We verify the proposed framework with four different types of 3D object detectors.Experimental results show that our proposed Syn-Aug significantly improves the performance of various 3D object detectors in the KITTI and nuScenes datasets,proving the effectiveness and generality of Syn-Aug.On KITTI,four different types of baseline models using Syn-Aug improved mAP by 0.89%,1.35%,1.61%and 1.14%respectively.On nuScenes,four different types of baseline models using Syn-Aug improved mAP by 14.93%,10.42%,8.47%and 6.81%respectively.The code is available at https://github.com/liuhuaijjin/Syn-Aug. 展开更多
关键词 3D object detection data augmentation DIVERSITY GENERALIZATION point cloud ROBUSTNESS
在线阅读 下载PDF
Prediction of abnormal TBM disc cutter wear in mixed ground condition using interpretable machine learning with data augmentation
15
作者 Kibeom Kwon Hangseok Choi +2 位作者 Jaehoon Jung Dongku Kim Young Jin Shin 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2059-2071,共13页
The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to ... The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to be thoroughly investigated,primarily due to the complexity of considering mixed ground conditions and the imbalance in the number of instances between the two types of wear.This study developed a prediction model for abnormal TBM disc cutter wear,considering mixed ground conditions,by employing interpretable machine learning with data augmentation.An equivalent elastic modulus was used to consider the characteristics of mixed ground conditions,and wear data was obtained from 65 cutterhead intervention(CHI)reports covering both mixed ground and hard rock sections.With a balanced training dataset obtained by data augmentation,an extreme gradient boosting(XGB)model delivered acceptable results with an accuracy of 0.94,an F1-score of 0.808,and a recall of 0.8.In addition,the accuracy for each individual disc cutter exhibited low variability.When employing data augmentation,a significant improvement in recall was observed compared to when it was not used,although the difference in accuracy and F1-score was marginal.The subsequent model interpretation revealed the chamber pressure,cutter installation radius,and torque as significant contributors.Specifically,a threshold in chamber pressure was observed,which could induce abnormal wear.The study also explored how elevated values of these influential contributors correlate with abnormal wear.The proposed model offers a valuable tool for planning the replacement of abnormally worn disc cutters,enhancing the safety and efficiency of TBM operations. 展开更多
关键词 Disc cutter Abnormal wear Mixed ground Interpretable machine learning Data augmentation
在线阅读 下载PDF
ONTDAS: An Optimized Noise-Based Traffic Data Augmentation System for Generalizability Improvement of Traffic Classifiers
16
作者 Rongwei Yu Jie Yin +2 位作者 Jingyi Xiang Qiyun Shao Lina Wang 《Computers, Materials & Continua》 2025年第7期365-391,共27页
With the emergence of new attack techniques,traffic classifiers usually fail to maintain the expected performance in real-world network environments.In order to have sufficient generalizability to deal with unknown ma... With the emergence of new attack techniques,traffic classifiers usually fail to maintain the expected performance in real-world network environments.In order to have sufficient generalizability to deal with unknown malicious samples,they require a large number of new samples for retraining.Considering the cost of data collection and labeling,data augmentation is an ideal solution.We propose an optimized noise-based traffic data augmentation system,ONTDAS.The system uses a gradient-based searching algorithm and an improved Bayesian optimizer to obtain optimized noise.The noise is injected into the original samples for data augmentation.Then,an improved bagging algorithm is used to integrate all the base traffic classifiers trained on noised datasets.The experiments verify ONTDAS on 6 types of base classifiers and 4 publicly available datasets respectively.The results show that ONTDAS can effectively enhance the traffic classifiers’performance and significantly improve their generalizability on unknown malicious samples.The system can also alleviate dataset imbalance.Moreover,the performance of ONTDAS is significantly superior to the existing data augmentation methods mentioned. 展开更多
关键词 Unknown malicious traffic classification data augmentation optimized noise generalizability improvement ensemble learning
在线阅读 下载PDF
Dual-Stream Attention-Based Classification Network for Tibial Plateau Fractures via Diffusion Model Augmentation and Segmentation Map Integration
17
作者 Yi Xie Zhi-wei Hao +8 位作者 Xin-meng Wang Hong-lin Wang Jia-ming Yang Hong Zhou Xu-dong Wang Jia-yao Zhang Hui-wen Yang Peng-ran Liu Zhe-wei Ye 《Current Medical Science》 2025年第1期57-69,共13页
Objective This study aimed to explore a novel method that integrates the segmentation guidance classification and the dif-fusion model augmentation to realize the automatic classification for tibial plateau fractures(... Objective This study aimed to explore a novel method that integrates the segmentation guidance classification and the dif-fusion model augmentation to realize the automatic classification for tibial plateau fractures(TPFs).Methods YOLOv8n-cls was used to construct a baseline model on the data of 3781 patients from the Orthopedic Trauma Center of Wuhan Union Hospital.Additionally,a segmentation-guided classification approach was proposed.To enhance the dataset,a diffusion model was further demonstrated for data augmentation.Results The novel method that integrated the segmentation-guided classification and diffusion model augmentation sig-nificantly improved the accuracy and robustness of fracture classification.The average accuracy of classification for TPFs rose from 0.844 to 0.896.The comprehensive performance of the dual-stream model was also significantly enhanced after many rounds of training,with both the macro-area under the curve(AUC)and the micro-AUC increasing from 0.94 to 0.97.By utilizing diffusion model augmentation and segmentation map integration,the model demonstrated superior efficacy in identifying SchatzkerⅠ,achieving an accuracy of 0.880.It yielded an accuracy of 0.898 for SchatzkerⅡandⅢand 0.913 for SchatzkerⅣ;for SchatzkerⅤandⅥ,the accuracy was 0.887;and for intercondylar ridge fracture,the accuracy was 0.923.Conclusion The dual-stream attention-based classification network,which has been verified by many experiments,exhibited great potential in predicting the classification of TPFs.This method facilitates automatic TPF assessment and may assist surgeons in the rapid formulation of surgical plans. 展开更多
关键词 Artificial intelligence YOLOv8 Tibial plateau fracture Diffusion model augmentation Segmentation map
暂未订购
Enhancing Medical Image Classification with BSDA-Mamba:Integrating Bayesian Random Semantic Data Augmentation and Residual Connections
18
作者 Honglin Wang Yaohua Xu Cheng Zhu 《Computers, Materials & Continua》 2025年第6期4999-5018,共20页
Medical image classification is crucial in disease diagnosis,treatment planning,and clinical decisionmaking.We introduced a novel medical image classification approach that integrates Bayesian Random Semantic Data Aug... Medical image classification is crucial in disease diagnosis,treatment planning,and clinical decisionmaking.We introduced a novel medical image classification approach that integrates Bayesian Random Semantic Data Augmentation(BSDA)with a Vision Mamba-based model for medical image classification(MedMamba),enhanced by residual connection blocks,we named the model BSDA-Mamba.BSDA augments medical image data semantically,enhancing the model’s generalization ability and classification performance.MedMamba,a deep learning-based state space model,excels in capturing long-range dependencies in medical images.By incorporating residual connections,BSDA-Mamba further improves feature extraction capabilities.Through comprehensive experiments on eight medical image datasets,we demonstrate that BSDA-Mamba outperforms existing models in accuracy,area under the curve,and F1-score.Our results highlight BSDA-Mamba’s potential as a reliable tool for medical image analysis,particularly in handling diverse imaging modalities from X-rays to MRI.The open-sourcing of our model’s code and datasets,will facilitate the reproduction and extension of our work. 展开更多
关键词 Deep learning medical image classification data augmentation visual state space model
在线阅读 下载PDF
SpaGRA:Graph augmentation facilitates domain identification for spatially resolved transcriptomics
19
作者 Xue Sun Wei Zhang +8 位作者 Wenrui Li Na Yu Daoliang Zhang Qi Zou Qiongye Dong Xianglin Zhang Zhiping Liu Zhiyuan Yuan Rui Gao 《Journal of Genetics and Genomics》 2025年第1期93-104,共12页
Recent advances in spatially resolved transcriptomics(SRT)have provided new opportunities for characterizing spatial structures of various tissues.Graph-based geometric deep learning has gained widespread adoption for... Recent advances in spatially resolved transcriptomics(SRT)have provided new opportunities for characterizing spatial structures of various tissues.Graph-based geometric deep learning has gained widespread adoption for spatial domain identification tasks.Currently,most methods define adjacency relation between cells or spots by their spatial distance in SRT data,which overlooks key biological interactions like gene expression similarities,and leads to inaccuracies in spatial domain identification.To tackle this challenge,we propose a novel method,SpaGRA(https://github.com/sunxue-yy/SpaGRA),for automatic multi-relationship construction based on graph augmentation.SpaGRA uses spatial distance as prior knowledge and dynamically adjusts edge weights with multi-head graph attention networks(GATs).This helps SpaGRA to uncover diverse node relationships and enhance message passing in geometric contrastive learning.Additionally,SpaGRA uses these multi-view relationships to construct negative samples,addressing sampling bias posed by random selection.Experimental results show that SpaGRA presents superior domain identification performance on multiple datasets generated from different protocols.Using SpaGRA,we analyze the functional regions in the mouse hypothalamus,identify key genes related to heart development in mouse embryos,and observe cancer-associated fibroblasts enveloping cancer cells in the latest Visium HD data.Overall,SpaGRA can effectively characterize spatial structures across diverse SRT datasets. 展开更多
关键词 Spatial domain identification Spatially resolved transcriptomics Multi-head graph attention networks Graph augmentation Geometric contrastive learning
原文传递
A solution framework for the experimental data shortage problem of lithium-ion batteries:Generative adversarial network-based data augmentation for battery state estimation
20
作者 Jinghua Sun Ankun Gu Josef Kainz 《Journal of Energy Chemistry》 2025年第4期476-497,共22页
In order to address the widespread data shortage problem in battery research,this paper proposes a generative adversarial network model that combines it with deep convolutional networks,the Wasserstein distance,and th... In order to address the widespread data shortage problem in battery research,this paper proposes a generative adversarial network model that combines it with deep convolutional networks,the Wasserstein distance,and the gradient penalty to achieve data augmentation.To lower the threshold for implementing the proposed method,transfer learning is further introduced.The W-DC-GAN-GP-TL framework is thereby formed.This framework is evaluated on 3 different publicly available datasets to judge the quality of generated data.Through visual comparisons and the examination of two visualization methods(probability density function(PDF)and principal component analysis(PCA)),it is demonstrated that the generated data is hard to distinguish from the real data.The application of generated data for training a battery state model using transfer learning is further evaluated.Specifically,Bi-GRU-based and Transformer-based methods are implemented on 2 separate datasets for estimating state of health(SOH)and state of charge(SOC),respectively.The results indicate that the proposed framework demonstrates satisfactory performance in different scenarios:for the data replacement scenario,where real data are removed and replaced with generated data,the state estimator accuracy decreases only slightly;for the data enhancement scenario,the estimator accuracy is further improved.The estimation accuracy of SOH and SOC is as low as 0.69%and 0.58%root mean square error(RMSE)after applying the proposed framework.This framework provides a reliable method for enriching battery measurement data.It is a generalized framework capable of generating a variety of time series data. 展开更多
关键词 Lithium-ion battery Generative adversarial network Data augmentation State of health State of charge Data shortage
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部