An improved two-channel Synthetic Aperture Radar Ground Moving Target Indication (SAR-GMTI) method based on eigen-decomposition of the covariance matrix is investigated. Based on the joint Probability Density Function...An improved two-channel Synthetic Aperture Radar Ground Moving Target Indication (SAR-GMTI) method based on eigen-decomposition of the covariance matrix is investigated. Based on the joint Probability Density Function (PDF) of the Along-Track Interferometric (ATI) phase and the similarity between the two SAR complex images, a novel ellipse detector is presented and is applied to the indication of ground moving targets. We derive its statistics and analyze the performance of detection process in detail. Compared with the approach using the ATI phase, the ellipse detector has a better performance of detection in homogenous clutter. Numerical experiments on simulated data are presented to validate the improved performance of the ellipse detector with respect to the ATI phase approach. Finally, the detection capability of the proposed method is demonstrated by measured SAR data.展开更多
A simplified method for the simulation of the ergodic spatially correlated seismic ground motion is proposed based on the commonly used original spectral representation method. To represent the correlation in the grou...A simplified method for the simulation of the ergodic spatially correlated seismic ground motion is proposed based on the commonly used original spectral representation method. To represent the correlation in the ground motion, the phase angles are given by explicit terms with a clear physical meaning. By these explicit terms, the computational efficiency can be improved by converting the decomposition of the complex cross-spectral matrix into the decomposition of the real incoherence coefficient matrix. Double-indexing frequencies are introduced to simulate the ergodic seismic ground motion, and the ergodic feature of the improved method is demonstrated theoretically. Subsequently, an explicit solution of the elements of the lower triangular matrix under the Cholesky decomposition is given. With this explicit solution, the improved method is simplified, and the computational efficiency can be improved greatly by avoiding the repetitive Cholesky decomposition of the cross-spectral matrix in each frequency step. Finally, a numerical example shows the good characteristic of the improved method.展开更多
模块间接地故障是H桥级联型电池储能系统(cascaded H bridge based battery energy storage system,CHB-BESS)的易发故障,快速诊断故障位置对减少故障损失至关重要。模块间接地故障的故障特征主要体现在零序电流上,会受到接地过渡电阻...模块间接地故障是H桥级联型电池储能系统(cascaded H bridge based battery energy storage system,CHB-BESS)的易发故障,快速诊断故障位置对减少故障损失至关重要。模块间接地故障的故障特征主要体现在零序电流上,会受到接地过渡电阻的影响。为实现接地过渡电阻不确定情况下,故障模块位置的快速准确鲁棒定位,本工作提出了一种基于损失特征矩阵的快速故障诊断方法。首先,本工作建立了零序等效电路模型;然后,将零序电流模型离散化;接着,提出基于损失特征矩阵的定位方法,该方法使用拓扑矩阵描述故障位置和过渡电阻的遍历信息,基于离散化模型来遍历计算零序电流,将计算结果与测量结果的偏差记录在损失特征矩阵中,通过偏差最优解确定故障位置;其次,本工作证实了故障定位问题作为最优化问题具有最优解唯一性,偏差最优解在接地过渡电阻不确定的情况下可获得准确的故障发生位置;最终,基于最优解唯一性提出了最优化计算的加速方法。实测表明,所提方法的平均定位误差仅为0.2个子模块,在接地过渡电阻较大范围不确定的情况下实现了准确定位,并且所提加速方法显著提高诊断速度。展开更多
基金Supported by the Aviation Science Fund (No. 20080152004)China Postdoctoral Foundation (No. 20090461119)
文摘An improved two-channel Synthetic Aperture Radar Ground Moving Target Indication (SAR-GMTI) method based on eigen-decomposition of the covariance matrix is investigated. Based on the joint Probability Density Function (PDF) of the Along-Track Interferometric (ATI) phase and the similarity between the two SAR complex images, a novel ellipse detector is presented and is applied to the indication of ground moving targets. We derive its statistics and analyze the performance of detection process in detail. Compared with the approach using the ATI phase, the ellipse detector has a better performance of detection in homogenous clutter. Numerical experiments on simulated data are presented to validate the improved performance of the ellipse detector with respect to the ATI phase approach. Finally, the detection capability of the proposed method is demonstrated by measured SAR data.
基金supported by the National Natural Science Foundation of China(Nos.90815020 and 50808067)
文摘A simplified method for the simulation of the ergodic spatially correlated seismic ground motion is proposed based on the commonly used original spectral representation method. To represent the correlation in the ground motion, the phase angles are given by explicit terms with a clear physical meaning. By these explicit terms, the computational efficiency can be improved by converting the decomposition of the complex cross-spectral matrix into the decomposition of the real incoherence coefficient matrix. Double-indexing frequencies are introduced to simulate the ergodic seismic ground motion, and the ergodic feature of the improved method is demonstrated theoretically. Subsequently, an explicit solution of the elements of the lower triangular matrix under the Cholesky decomposition is given. With this explicit solution, the improved method is simplified, and the computational efficiency can be improved greatly by avoiding the repetitive Cholesky decomposition of the cross-spectral matrix in each frequency step. Finally, a numerical example shows the good characteristic of the improved method.
文摘模块间接地故障是H桥级联型电池储能系统(cascaded H bridge based battery energy storage system,CHB-BESS)的易发故障,快速诊断故障位置对减少故障损失至关重要。模块间接地故障的故障特征主要体现在零序电流上,会受到接地过渡电阻的影响。为实现接地过渡电阻不确定情况下,故障模块位置的快速准确鲁棒定位,本工作提出了一种基于损失特征矩阵的快速故障诊断方法。首先,本工作建立了零序等效电路模型;然后,将零序电流模型离散化;接着,提出基于损失特征矩阵的定位方法,该方法使用拓扑矩阵描述故障位置和过渡电阻的遍历信息,基于离散化模型来遍历计算零序电流,将计算结果与测量结果的偏差记录在损失特征矩阵中,通过偏差最优解确定故障位置;其次,本工作证实了故障定位问题作为最优化问题具有最优解唯一性,偏差最优解在接地过渡电阻不确定的情况下可获得准确的故障发生位置;最终,基于最优解唯一性提出了最优化计算的加速方法。实测表明,所提方法的平均定位误差仅为0.2个子模块,在接地过渡电阻较大范围不确定的情况下实现了准确定位,并且所提加速方法显著提高诊断速度。