Over twenty thousand lightning location data obtained by using Lightning Location System(LLS) from Lanzhou and Beijing regions have been analysed to ascertain the characteristics of ground flashes in both regions. The...Over twenty thousand lightning location data obtained by using Lightning Location System(LLS) from Lanzhou and Beijing regions have been analysed to ascertain the characteristics of ground flashes in both regions. The strength of positive flashes is 5 times higher in Lanzhou than in Beijing. The strength of positive flashes is 3 times and 2.2 times as large as negative flashes in Beijing and in Lanzhou respectively. It has been found that the strength of positive and negative flashes is submitted to the normal distribution, and is independent of the characteristics of thunderstorm. So the lightning strength obtained by DF may be used to forecast the coming of thunderstorm. Although the stroke number in both regions decreases as exponent regulation, the maximum number of return stroke for one lightning in Beijing is more than that in Lanzhou. The peak flash rate occurs in late afternoon for both regions, but the maximum and minimum flash rate appeared an hour earlier in Beijing than in Lanzhou.The relationship between DF display and lightning radiation electric field, discharge current is obtained.展开更多
The electrical characteristics of thunderstorms in three different altitude regions of the Chinese inland plateau have been analyzed in this paper. The results show, according to the polarity of the surface electric ...The electrical characteristics of thunderstorms in three different altitude regions of the Chinese inland plateau have been analyzed in this paper. The results show, according to the polarity of the surface electric (E) field, that the thunderstorms can be divided into two categories in the study regions: one showing the normal tripole electrical charge structure (normal-type), and the other showing the special tripole charge structure with a larger-than-usual lower positive charge center (LPCC) at the base of thunderstorm (special-type), where the induced surface E field is controlled by the LPCC when a thunderstorm is overhead. We find that the two types of thunderstorms have different occurrences in different regions, and the percentage of special-type thunderstorms increases with the altitude. On the whole, the flash rate of thunderstorms is quite low, and the mean value is about 1-3 fl/min, while the flash rate of special-type is slightly greater than that of the normal-type thunderstorm. The statistical results of cloud-to-ground flash (CG) numbers indicate that the ratio of +CG flash increases with the altitude, with the value about 14.7 percent through 25.4 percent.展开更多
文摘Over twenty thousand lightning location data obtained by using Lightning Location System(LLS) from Lanzhou and Beijing regions have been analysed to ascertain the characteristics of ground flashes in both regions. The strength of positive flashes is 5 times higher in Lanzhou than in Beijing. The strength of positive flashes is 3 times and 2.2 times as large as negative flashes in Beijing and in Lanzhou respectively. It has been found that the strength of positive and negative flashes is submitted to the normal distribution, and is independent of the characteristics of thunderstorm. So the lightning strength obtained by DF may be used to forecast the coming of thunderstorm. Although the stroke number in both regions decreases as exponent regulation, the maximum number of return stroke for one lightning in Beijing is more than that in Lanzhou. The peak flash rate occurs in late afternoon for both regions, but the maximum and minimum flash rate appeared an hour earlier in Beijing than in Lanzhou.The relationship between DF display and lightning radiation electric field, discharge current is obtained.
基金supported by National Natural Science Foundation of China (Grant No. 40905001, 40775004)the Main Direction Program of the Knowledge Innovation of Chinese Academy of Sciences (Grant No.KZCX2-YW-206)
文摘The electrical characteristics of thunderstorms in three different altitude regions of the Chinese inland plateau have been analyzed in this paper. The results show, according to the polarity of the surface electric (E) field, that the thunderstorms can be divided into two categories in the study regions: one showing the normal tripole electrical charge structure (normal-type), and the other showing the special tripole charge structure with a larger-than-usual lower positive charge center (LPCC) at the base of thunderstorm (special-type), where the induced surface E field is controlled by the LPCC when a thunderstorm is overhead. We find that the two types of thunderstorms have different occurrences in different regions, and the percentage of special-type thunderstorms increases with the altitude. On the whole, the flash rate of thunderstorms is quite low, and the mean value is about 1-3 fl/min, while the flash rate of special-type is slightly greater than that of the normal-type thunderstorm. The statistical results of cloud-to-ground flash (CG) numbers indicate that the ratio of +CG flash increases with the altitude, with the value about 14.7 percent through 25.4 percent.