期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Prediction and Sensitivity Analysis of Foam Concrete Compressive Strength Based on Machine Learning Techniques with Hyperparameter Optimization
1
作者 Sen Yang Jie Zhong +5 位作者 Boyu Gan Yi Sun Changming Bu Mingtao Zhang Jiehong Li Yang Yu 《Computer Modeling in Engineering & Sciences》 2025年第9期2943-2967,共25页
Foam concrete is widely used in engineering due to its lightweight and high porosity.Its compressive strength,a key performance indicator,is influenced by multiple factors,showing nonlinear variation.As compressive st... Foam concrete is widely used in engineering due to its lightweight and high porosity.Its compressive strength,a key performance indicator,is influenced by multiple factors,showing nonlinear variation.As compressive strength tests for foam concrete take a long time,a fast and accurate prediction method is needed.In recent years,machine learning has become a powerful tool for predicting the compressive strength of cement-based materials.However,existing studies often use a limited number of input parameters,and the prediction accuracy of machine learning models under the influence of multiple parameters and nonlinearity remains unclear.This study selects foam concrete density,water-to-cement ratio(W/C),supplementary cementitious material replacement rate(SCM),fine aggregate to binder ratio(FA/Binder),superplasticizer content(SP),and age of the concrete(Age)as input parameters,with compressive strength as the output.Five different machine learning models were compared,and sensitivity analysis,based on Shapley Additive Explanations(SHAP),was used to assess the contribution of each input parameter.The results show that Gaussian Process Regression(GPR)outperforms the other models,with R2,RMSE,MAE,and MAPE values of 0.95,1.6,0.81,and 0.2,respectively.It is because GPR,optimized through Bayesian methods,better fits complex nonlinear relationships,especially considering a large number of input parameters.Sensitivity analysis indicates that the influence of input parameters on compressive strength decreases in the following order:foam concrete density,W/C,Age,FA/Binder,SP,and SCM. 展开更多
关键词 Foam concrete compressive strength machine learning Gaussian grocess regression shapley additive explanations
在线阅读 下载PDF
黑白二值图像编解码方案的实现
2
作者 肖严娜 《上海铁道大学学报》 CAS 1998年第3期130-132,共3页
采用“行程码—自适应哈夫曼码”的编解码方式,对黑白二值图像进行压缩处理,获得了较高的图像压缩率和较好的图像恢复质量。
关键词 数字图象处理 黑白二值图像 编解码 计算机 方案
在线阅读 下载PDF
应用自制扫描电镜图像处理系统进行人盆腹膜孔的研究 被引量:1
3
作者 李继承 赵章仁 +1 位作者 高永晟 周吉林 《中华物理医学杂志》 CAS CSCD 1995年第2期104-106,共3页
应用一种具有较高性能价格比的扫描电镜图像处理系统,对人体盆腹膜孔进行研究。发现人盆腹膜有两类间皮细胞,即扁平形和立方形间皮细胞。盆腹膜孔仅出现在立方形间皮细胞之间.呈偏态分布,其标准差和标准误分别为9.44和0.98... 应用一种具有较高性能价格比的扫描电镜图像处理系统,对人体盆腹膜孔进行研究。发现人盆腹膜有两类间皮细胞,即扁平形和立方形间皮细胞。盆腹膜孔仅出现在立方形间皮细胞之间.呈偏态分布,其标准差和标准误分别为9.44和0.98.盆腹膜孔面积主要分布在1.34~32.11μm ̄2之间,变异系数为94.40.在盆腹膜上,腹膜孔的平均密度为7.2%,最大密度是11.6%。 展开更多
关键词 盆腹膜孔 间皮细胞 图像处理 扫描电镜
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部