With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical...With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical value(approximately 2.0×10^(5)),and the significant transition process on the blade/endwall surface leads to the sharp degradation of compressor performance,which seriously affects the engine fuel consumption and working stability at high altitudes.In this paper,the research progress on the internal flow mechanism and flow control methods of axial compressors at low Reynolds numbers is reviewed from the aspects of quantification and prediction of performance variation,flow loss mechanism related to separation and transition,efficient transition control and flow field organization.The development trend of the low-Reynolds-number effect of axial flow compressors is noted,and the difficulties and application prospects of aerodynamic design and efficient flow control methods for compressors under low Reynolds numbers at high altitudes are discussed.展开更多
Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefor...Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefore,in future“double high”power systems,research on the control technology of GFM converters will become an urgent demand.In this paper,we first introduce the basic principle of GFM control and then present five currently used control strategies for GFM converters:droop control,power synchronization control(PSC),virtual synchronous machine control(VSM),direct power control(DPC),and virtual oscillator control(VOC).These five strategies can independently establish voltage phasors to provide inertia to the system.Among these,droop control is the most widely used strategy.PSC and VSM are strategies that simulate the mechanical characteristics of synchronous generators;thus,they are more accurate than droop control.DPC regulates the active power and reactive power directly,with no inner current controller,and VOC is a novel method under study using an oscillator circuit to realize synchronization.Finally,we highlight key technologies and research directions to be addressed in the future.展开更多
The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper p...The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper presents a voltage balancing circuit and control method.First,a single capacitor method is used to design the circuit topology for energy transfer.Next,real-time voltage detection and control are employed to balance energy between cells.Finally,simulation and experimental results demonstrate the effectiveness of the proposed method,achieving balanced voltages of 3.97 V from initial voltages of 4.10,3.97,and 3.90 V.The proposed circuit is simple,reliable,and effectively prevents overcharge and overdischarge.展开更多
The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system...The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.展开更多
In the aerospace field, residual stress directly affects the strength, fatigue life and dimensional stability of thin-walled structural components, and is a key factor to ensure flight safety and reliability. At prese...In the aerospace field, residual stress directly affects the strength, fatigue life and dimensional stability of thin-walled structural components, and is a key factor to ensure flight safety and reliability. At present, research on residual stress at home and abroad mainly focuses on the optimization of traditional detection technology, stress control of manufacturing process and service performance evaluation, among which research on residual stress detection methods mainly focuses on the improvement of the accuracy, sensitivity, reliability and other performance of existing detection methods, but it still faces many challenges such as extremely small detection range, low efficiency, large error and limited application range.展开更多
Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of ...Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of control parameters present significant challenges in designing acceleration and deceleration control schedules.To thoroughly explore the performance potential of engine,a global integration design method for acceleration and deceleration control schedule based on inner and outer loop optimization is proposed.The outer loop optimization module employs Integrated Surrogate-Assisted Co-Differential Evolutionary(ISACDE)algorithm to optimize the variable geometry adjustment laws based on B-spline curve,and the inner loop optimization module adopts the fixed-state method to design the open-loop fuel–air ratio control schedules,which are aimed at minimizing the acceleration and deceleration time under multiple constraints.Simulation results demonstrate that the proposed global integration design method not only furthest shortens the acceleration and deceleration time,but also effectively safeguards the engine from overlimit.展开更多
This paper proposes an optimal midcourse guidance method for dual pulse air-to-air missiles,which is based on the framework of the linear Gauss pseudospectral model predictive control method.Firstly,a multistage optim...This paper proposes an optimal midcourse guidance method for dual pulse air-to-air missiles,which is based on the framework of the linear Gauss pseudospectral model predictive control method.Firstly,a multistage optimal control problem with unspecified terminal time is formulated.Secondly,the control and terminal time update formulas are derived analytically.In contrast to previous work,the derivation process fully considers the Hamiltonian function corresponding to the unspecified terminal time,which is coupled with control,state,and costate.On the assumption of small perturbation,a special algebraic equation is provided to represent the equivalent optimal condition for the terminal time.Also,using Gauss pseudospectral collocation,error propagation dynamical equations involving the first-order correction term of the terminal time are transformed into a set of algebraic equations.Furthermore,analytical modification formulas can be derived by associating those equations and optimal conditions to eliminate terminal error and approach nonlinear optimal control.Even with their mathematical complexity,these formulas produce more accurate control and terminal time corrections and remove reliance on task-related parameters.Finally,several numerical simulations,comparisons with typical methods,and Monte Carlo simulations have been done to verify its optimality,high convergence rate,great stability and robustness.展开更多
This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber comp...This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber composites(MFCs)are used as actuators and sensors.To this end,a metal pore truncated CS with MFCs attached to its surface is considered.Adding artificial virtual springs at two edges of the truncated CS achieves various elastic supported boundaries by changing the spring stiffness.Based on the first-order shear deformation theory(FSDT),minimum energy principle,and artificial virtual spring technology,the theoretical formulations considering the electromechanical coupling are derived.The comparison of the natural frequency of the present results with the natural frequencies reported in previous literature evaluates the accuracy of the present approach.To study the vibration control,the integral quadrature method in conjunction with the differential quadrature approximation in the length direction is used to discretize the partial differential dynamical system to form a set of ordinary differential equations.With the aid of the velocity negative feedback method,both the time history and the input control voltage on the actuator are demonstrated to present the effects of velocity feedback gain,pore distribution type,semi-vertex angle,impact loading,and rotational angular velocity on the traveling wave vibration control.展开更多
This article aims to enhance seismic hazard assessment methods for Kazakhstan’s seismotectonic conditions.It combines probabilistic seismic hazard analysis(PSHA),ground motion simulation,sitespecific geological and g...This article aims to enhance seismic hazard assessment methods for Kazakhstan’s seismotectonic conditions.It combines probabilistic seismic hazard analysis(PSHA),ground motion simulation,sitespecific geological and geotechnical data analysis,and seismic scenario analysis to develop Probabilistic General Seismic Zoning(GSZ)maps for Kazakhstan and Probabilistic Seismic Microzoning maps for Almaty.These maps align with Eurocode 8 principles,incorporating seismic intensity and engineering parameters like peak ground acceleration(PGA).The new procedure,applied in national projects,has resulted in GSZ maps for the country,seismic microzoning maps for Almaty,and detailed seismic zoning maps for East Kazakhstan.These maps,part of a regulatory document,guide earthquake-resistant design and construction.They offer a comprehensive assessment of seismic hazards,integrating traditional Medvedev-Sponheuer-Karnik(MSK-64)intensity scale points with quantitative parameters like peak ground acceleration.This innovative approach promises to advance methods for quantifying seismic hazards in specific regions.展开更多
With the rapid development of China’s civil aviation industry,the teaching method of operating knowledge of flight principles has changed greatly,which creates a good implementation environment to improve the safety ...With the rapid development of China’s civil aviation industry,the teaching method of operating knowledge of flight principles has changed greatly,which creates a good implementation environment to improve the safety of civil aviation in our country.At present,the main training content of air route transport pilots in China is basic aviation theory,initial flight training,airline modification,etc.The principles of flight control are an important part of basic aviation theoretical knowledge training,which will involve a large number of flight technology training content,instructors will also be based on the pilot type.Teaching flight control theory and practical knowledge requires relatively high theoretical learning ability of students,and the learning effect of this part of theoretical knowledge will directly affect the quality of subsequent learning,but also directly affect the effectiveness of flight training.This paper focuses on the analysis of the basic concepts of flight control,studies the existing problems in the teaching of flight control principles,summarizes the teaching measures of flight control principles,aiming to provide a reference to teaching personnel.展开更多
First at all, it introduced the concept and the damages of continuous cropping obstacle. Then, it analyzed the causes of continuous cropping obstacles for Atractylodes macrocephala Koidz. In the end, in order to provi...First at all, it introduced the concept and the damages of continuous cropping obstacle. Then, it analyzed the causes of continuous cropping obstacles for Atractylodes macrocephala Koidz. In the end, in order to provide guidance for pro- moting sustainable development of Atractylodes macrocephala Koidz industry in Pingjiang County, it put forward some control methods for eliminating continuous cropping obstacles of Atractylodes macrocephala Koidz, including breeding varieties with high resistance; applying rotation cropping and intercropping reasonable; rational fertilization and soil disinfection; introducing antagonistic bacterial and eliminating au- tointoxication.展开更多
To address the global climate crisis,achieving energy transitions is imperative.Establishing a new-type power system is a key measure to achieve CO_(2) emissions peaking and carbon neutrality.The core goal is to trans...To address the global climate crisis,achieving energy transitions is imperative.Establishing a new-type power system is a key measure to achieve CO_(2) emissions peaking and carbon neutrality.The core goal is to transform renewable energy resources into primary power sources.The large-scale integration of high proportions of renewable energy sources and power electronic devices will dramatically change the operational mechanisms and control strategies of power systems.Existing wind and solar converters mostly adopt the grid-following control mode,which leads to significant challenges in system security and stability as it is insufficient to support the frequency and voltage of the grid.On the other hand,grid-forming control technology(GFM)can provide voltage and frequency support for the system,and thus becomes an effective measure to improve the inertia and damping characteristics of power systems.This paper illustrates the principles,control strategies,equipment types,application scenarios,and project implementation of grid-forming technology.The simulation and analysis based on a renewable-dominated real new-type power system show that GFM can significantly enhance the frequency and voltage support capacity of the power system,improve renewable energy accommodation capacity and grid transmission capacity under weak grid conditions,and play an important role in enhancing the stability and power supply reliability of renewable-dominated new-type power systems.展开更多
Threaded fasteners are one of the most commonly used connection methods for mechanical structures.Its primary function is to generate appropriate clamping forces and fasten the connected parts.An inappropriate preload...Threaded fasteners are one of the most commonly used connection methods for mechanical structures.Its primary function is to generate appropriate clamping forces and fasten the connected parts.An inappropriate preload can cause loosening,fatigue fracture,and other problems.This will affect the safety and reliability of mechanical equipment.The precise control of the preload has become a critical issue in mechanical assembly processes.Over the past few decades,various tightening measures and methods have been proposed to address this issue.However,many problems continue to exist with practical applications that have not been reviewed comprehensively and systematically.First,various control methods were summarized systematically,and their advantages and disadvantages in engineering applications were analyzed.Torque control is the most widely used tightening method owing to its simple operation and low cost.Therefore,the research on the torque control method was summarized systematically from three aspects:the torque-preload correlation formula,effective friction radius,and friction characteristics during tightening.In addition,the special circumstances that may increase preload uncertainty were discussed.Finally,based on a summary of the current research status,the prospects for future research were discussed.This study would aid researchers in extensively understanding the problems in preload control.展开更多
Observation-based method for O_(3)formation sensitivity research is an important tool to analyze the causes of ground-level O_(3)pollution,which has broad application potentials in determining the O_(3)pollution forma...Observation-based method for O_(3)formation sensitivity research is an important tool to analyze the causes of ground-level O_(3)pollution,which has broad application potentials in determining the O_(3)pollution formation mechanism and developing prevention and control strategies.This paper outlined the development history of research on O_(3)formation sensitivity based on observational methods,described the principle and applicability of the methodology,summarized the relative application results in China and provided recommendations on the prevention and control of O_(3)pollution in China based on relevant study results,and finally pointed out the shortcomings and future development prospects in this field in China.The overview study showed that the O_(3)formation sensitivity in some urban areas in China in recent years presented a gradual shifting tendency from the VOC-limited regime to the transition regime or the NO_(x)-limited regime due to the implementation of the O_(3)precursors emission reduction policies;O_(3)pollution control strategies and precursor control countermeasures should be formulated based on local conditions and the dynamic control capability of O_(3)pollution control measures should be improved.There are still some current deficiencies in the study field in China.Therefore,it is recommended that a stereoscopic monitoring network for atmospheric photochemical components should be further constructed and improved;the atmospheric chemical mechanisms should be vigorously developed,and standardized methods for determining the O_(3)formation sensitivity should be established in China in the near future.展开更多
Based on the dynamics of ABS-equipped vehicles during cornering braking, the electronic brake- force distribution (EBD) control methods of ABS-equipped vehicles during cornering braking are proposed. According to th...Based on the dynamics of ABS-equipped vehicles during cornering braking, the electronic brake- force distribution (EBD) control methods of ABS-equipped vehicles during cornering braking are proposed. According to the dynamics and the tire model under tire adhesion limit, the stability acceptance criteria of vehicles during cornering braking are proposed. According to the stability acceptance criteria and the ABS control, the EBD control methods of ABS-equipped vehicles during cornering braking are implemented by adjusting the threshold values of tires slip independently. The vehicle states during cornering braking at two typical initial velocities of the vehicle are analyzed by the EBD control methods, whose results indicate the EBD control methods can improve the braking performances of the vehicle during cornering braking comparing with the ABS control.展开更多
With ongoing economic,scientific,and technological developments,the electronic devices used in daily lives are developing toward precision and miniaturization,and so the demand for high-precision manufacturing machine...With ongoing economic,scientific,and technological developments,the electronic devices used in daily lives are developing toward precision and miniaturization,and so the demand for high-precision manufacturing machinery is expanding.The most important piece of equipment in modern high-precision manufacturing is the macro-micro motion platform(M3P),which offers high speed,precision,and efficiency and has macro-micro motion coupling characteristics due to its mechanical design and composition of its driving components.Therefore,the design of the control system is crucial for the overall precision of the platform;conventional proportional–integral–derivative control cannot meet the system requirements,and so M3Ps are the subject of a growing range of modern control strategies.This paper begins by describing the development history of M3Ps,followed by their platform structure and motion control system components,and then in-depth assessments of the macro,micro,and macro-micro control systems.In addition to examining the advantages and disadvantages of current macro-micro motion control,recent technological breakthroughs are noted.Finally,based on existing problems,future directions for M3P control systems are given,and the present conclusions offer guidelines for future work on M3Ps.展开更多
Metals and metalloids(termed as metals in this article)are important constituent elements of the earth's crust.A number of metals,if present in excess,are toxic to organisms and therefore they are usually defined a...Metals and metalloids(termed as metals in this article)are important constituent elements of the earth's crust.A number of metals,if present in excess,are toxic to organisms and therefore they are usually defined as toxic metals.展开更多
In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when sign...In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers.展开更多
Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analy...Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.展开更多
A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines...A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method.展开更多
基金co-supported by the National Natural Science Foundation of China(No.52306053)the Science Center for Gas Turbine Project,China(No.P2022-B-Ⅱ-005-001)the National Science and Technology Major Project of China(No.2017-Ⅱ-0010-0024)。
文摘With the continuous increase of aeroengine flight ceiling(>20 km),the thin atmosphere at high altitudes and the size effect all cause the compressor component inlet Reynolds number to decrease rapidly to a critical value(approximately 2.0×10^(5)),and the significant transition process on the blade/endwall surface leads to the sharp degradation of compressor performance,which seriously affects the engine fuel consumption and working stability at high altitudes.In this paper,the research progress on the internal flow mechanism and flow control methods of axial compressors at low Reynolds numbers is reviewed from the aspects of quantification and prediction of performance variation,flow loss mechanism related to separation and transition,efficient transition control and flow field organization.The development trend of the low-Reynolds-number effect of axial flow compressors is noted,and the difficulties and application prospects of aerodynamic design and efficient flow control methods for compressors under low Reynolds numbers at high altitudes are discussed.
基金supported by the National Natural Science Foundation of China(No.52177122)the“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA 21050100)the Youth Innovation Promotion Association CAS(No.2018170)。
文摘Grid-forming(GFM)converters can provide inertia support for power grids through control technology,stabilize voltage and frequency,and improve system stability,unlike traditional grid-following(GFL)converters.Therefore,in future“double high”power systems,research on the control technology of GFM converters will become an urgent demand.In this paper,we first introduce the basic principle of GFM control and then present five currently used control strategies for GFM converters:droop control,power synchronization control(PSC),virtual synchronous machine control(VSM),direct power control(DPC),and virtual oscillator control(VOC).These five strategies can independently establish voltage phasors to provide inertia to the system.Among these,droop control is the most widely used strategy.PSC and VSM are strategies that simulate the mechanical characteristics of synchronous generators;thus,they are more accurate than droop control.DPC regulates the active power and reactive power directly,with no inner current controller,and VOC is a novel method under study using an oscillator circuit to realize synchronization.Finally,we highlight key technologies and research directions to be addressed in the future.
基金funded by the Basic Science(Natural Science)Research Project of Colleges and Universities in Jiangsu Province,Grant Number 22KJD470002.
文摘The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper presents a voltage balancing circuit and control method.First,a single capacitor method is used to design the circuit topology for energy transfer.Next,real-time voltage detection and control are employed to balance energy between cells.Finally,simulation and experimental results demonstrate the effectiveness of the proposed method,achieving balanced voltages of 3.97 V from initial voltages of 4.10,3.97,and 3.90 V.The proposed circuit is simple,reliable,and effectively prevents overcharge and overdischarge.
文摘The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.
文摘In the aerospace field, residual stress directly affects the strength, fatigue life and dimensional stability of thin-walled structural components, and is a key factor to ensure flight safety and reliability. At present, research on residual stress at home and abroad mainly focuses on the optimization of traditional detection technology, stress control of manufacturing process and service performance evaluation, among which research on residual stress detection methods mainly focuses on the improvement of the accuracy, sensitivity, reliability and other performance of existing detection methods, but it still faces many challenges such as extremely small detection range, low efficiency, large error and limited application range.
基金supported by the Basic Research on Dynamic Real-time Modeling and Onboard Adaptive Modeling of Aero Engine,China(No.QZPY202308)。
文摘Variable Cycle Engine(VCE)serves as the core system in achieving future advanced fighters with cross-generational performance and mission versatility.However,the resultant complex configuration and strong coupling of control parameters present significant challenges in designing acceleration and deceleration control schedules.To thoroughly explore the performance potential of engine,a global integration design method for acceleration and deceleration control schedule based on inner and outer loop optimization is proposed.The outer loop optimization module employs Integrated Surrogate-Assisted Co-Differential Evolutionary(ISACDE)algorithm to optimize the variable geometry adjustment laws based on B-spline curve,and the inner loop optimization module adopts the fixed-state method to design the open-loop fuel–air ratio control schedules,which are aimed at minimizing the acceleration and deceleration time under multiple constraints.Simulation results demonstrate that the proposed global integration design method not only furthest shortens the acceleration and deceleration time,but also effectively safeguards the engine from overlimit.
基金supported by the National Natural Science Foundation of China(No.62003019)the Young Talents Support Program of Beihang University,China(No.YWF-21-BJ-J-1180).
文摘This paper proposes an optimal midcourse guidance method for dual pulse air-to-air missiles,which is based on the framework of the linear Gauss pseudospectral model predictive control method.Firstly,a multistage optimal control problem with unspecified terminal time is formulated.Secondly,the control and terminal time update formulas are derived analytically.In contrast to previous work,the derivation process fully considers the Hamiltonian function corresponding to the unspecified terminal time,which is coupled with control,state,and costate.On the assumption of small perturbation,a special algebraic equation is provided to represent the equivalent optimal condition for the terminal time.Also,using Gauss pseudospectral collocation,error propagation dynamical equations involving the first-order correction term of the terminal time are transformed into a set of algebraic equations.Furthermore,analytical modification formulas can be derived by associating those equations and optimal conditions to eliminate terminal error and approach nonlinear optimal control.Even with their mathematical complexity,these formulas produce more accurate control and terminal time corrections and remove reliance on task-related parameters.Finally,several numerical simulations,comparisons with typical methods,and Monte Carlo simulations have been done to verify its optimality,high convergence rate,great stability and robustness.
基金Supported by the National Natural Science Foundation of China(Nos.12272056 and 11832002)。
文摘This paper investigates the active traveling wave vibration control of an elastic supported rotating porous aluminium conical shell(CS)under impact loading.Piezoelectric smart materials in the form of micro fiber composites(MFCs)are used as actuators and sensors.To this end,a metal pore truncated CS with MFCs attached to its surface is considered.Adding artificial virtual springs at two edges of the truncated CS achieves various elastic supported boundaries by changing the spring stiffness.Based on the first-order shear deformation theory(FSDT),minimum energy principle,and artificial virtual spring technology,the theoretical formulations considering the electromechanical coupling are derived.The comparison of the natural frequency of the present results with the natural frequencies reported in previous literature evaluates the accuracy of the present approach.To study the vibration control,the integral quadrature method in conjunction with the differential quadrature approximation in the length direction is used to discretize the partial differential dynamical system to form a set of ordinary differential equations.With the aid of the velocity negative feedback method,both the time history and the input control voltage on the actuator are demonstrated to present the effects of velocity feedback gain,pore distribution type,semi-vertex angle,impact loading,and rotational angular velocity on the traveling wave vibration control.
基金The work was carried out in the framework of earmarked funding“Assessment of seismic hazard of territories of Kazakhstan on modern scientific and methodological basis”,programme code number F.0980.Source of funding-Ministry of Science and Higher Education of the Republic of Kazakhstan.
文摘This article aims to enhance seismic hazard assessment methods for Kazakhstan’s seismotectonic conditions.It combines probabilistic seismic hazard analysis(PSHA),ground motion simulation,sitespecific geological and geotechnical data analysis,and seismic scenario analysis to develop Probabilistic General Seismic Zoning(GSZ)maps for Kazakhstan and Probabilistic Seismic Microzoning maps for Almaty.These maps align with Eurocode 8 principles,incorporating seismic intensity and engineering parameters like peak ground acceleration(PGA).The new procedure,applied in national projects,has resulted in GSZ maps for the country,seismic microzoning maps for Almaty,and detailed seismic zoning maps for East Kazakhstan.These maps,part of a regulatory document,guide earthquake-resistant design and construction.They offer a comprehensive assessment of seismic hazards,integrating traditional Medvedev-Sponheuer-Karnik(MSK-64)intensity scale points with quantitative parameters like peak ground acceleration.This innovative approach promises to advance methods for quantifying seismic hazards in specific regions.
文摘With the rapid development of China’s civil aviation industry,the teaching method of operating knowledge of flight principles has changed greatly,which creates a good implementation environment to improve the safety of civil aviation in our country.At present,the main training content of air route transport pilots in China is basic aviation theory,initial flight training,airline modification,etc.The principles of flight control are an important part of basic aviation theoretical knowledge training,which will involve a large number of flight technology training content,instructors will also be based on the pilot type.Teaching flight control theory and practical knowledge requires relatively high theoretical learning ability of students,and the learning effect of this part of theoretical knowledge will directly affect the quality of subsequent learning,but also directly affect the effectiveness of flight training.This paper focuses on the analysis of the basic concepts of flight control,studies the existing problems in the teaching of flight control principles,summarizes the teaching measures of flight control principles,aiming to provide a reference to teaching personnel.
文摘First at all, it introduced the concept and the damages of continuous cropping obstacle. Then, it analyzed the causes of continuous cropping obstacles for Atractylodes macrocephala Koidz. In the end, in order to provide guidance for pro- moting sustainable development of Atractylodes macrocephala Koidz industry in Pingjiang County, it put forward some control methods for eliminating continuous cropping obstacles of Atractylodes macrocephala Koidz, including breeding varieties with high resistance; applying rotation cropping and intercropping reasonable; rational fertilization and soil disinfection; introducing antagonistic bacterial and eliminating au- tointoxication.
文摘To address the global climate crisis,achieving energy transitions is imperative.Establishing a new-type power system is a key measure to achieve CO_(2) emissions peaking and carbon neutrality.The core goal is to transform renewable energy resources into primary power sources.The large-scale integration of high proportions of renewable energy sources and power electronic devices will dramatically change the operational mechanisms and control strategies of power systems.Existing wind and solar converters mostly adopt the grid-following control mode,which leads to significant challenges in system security and stability as it is insufficient to support the frequency and voltage of the grid.On the other hand,grid-forming control technology(GFM)can provide voltage and frequency support for the system,and thus becomes an effective measure to improve the inertia and damping characteristics of power systems.This paper illustrates the principles,control strategies,equipment types,application scenarios,and project implementation of grid-forming technology.The simulation and analysis based on a renewable-dominated real new-type power system show that GFM can significantly enhance the frequency and voltage support capacity of the power system,improve renewable energy accommodation capacity and grid transmission capacity under weak grid conditions,and play an important role in enhancing the stability and power supply reliability of renewable-dominated new-type power systems.
基金Supported by National Natural Science Foundation of China(Grant Nos.U23B20104,52075012 and 52205510).
文摘Threaded fasteners are one of the most commonly used connection methods for mechanical structures.Its primary function is to generate appropriate clamping forces and fasten the connected parts.An inappropriate preload can cause loosening,fatigue fracture,and other problems.This will affect the safety and reliability of mechanical equipment.The precise control of the preload has become a critical issue in mechanical assembly processes.Over the past few decades,various tightening measures and methods have been proposed to address this issue.However,many problems continue to exist with practical applications that have not been reviewed comprehensively and systematically.First,various control methods were summarized systematically,and their advantages and disadvantages in engineering applications were analyzed.Torque control is the most widely used tightening method owing to its simple operation and low cost.Therefore,the research on the torque control method was summarized systematically from three aspects:the torque-preload correlation formula,effective friction radius,and friction characteristics during tightening.In addition,the special circumstances that may increase preload uncertainty were discussed.Finally,based on a summary of the current research status,the prospects for future research were discussed.This study would aid researchers in extensively understanding the problems in preload control.
基金supported by the National Research Program for Key Issues in Air Pollution Control(No.DQGG202121)the Beijing Municipal Science&Technology Commission(No.Z181100005418015)+1 种基金National Natural Science Foundation of China(No.42075094)the National Research Program for Key Issue in Air Pollution Control(No.DQGG2021101)。
文摘Observation-based method for O_(3)formation sensitivity research is an important tool to analyze the causes of ground-level O_(3)pollution,which has broad application potentials in determining the O_(3)pollution formation mechanism and developing prevention and control strategies.This paper outlined the development history of research on O_(3)formation sensitivity based on observational methods,described the principle and applicability of the methodology,summarized the relative application results in China and provided recommendations on the prevention and control of O_(3)pollution in China based on relevant study results,and finally pointed out the shortcomings and future development prospects in this field in China.The overview study showed that the O_(3)formation sensitivity in some urban areas in China in recent years presented a gradual shifting tendency from the VOC-limited regime to the transition regime or the NO_(x)-limited regime due to the implementation of the O_(3)precursors emission reduction policies;O_(3)pollution control strategies and precursor control countermeasures should be formulated based on local conditions and the dynamic control capability of O_(3)pollution control measures should be improved.There are still some current deficiencies in the study field in China.Therefore,it is recommended that a stereoscopic monitoring network for atmospheric photochemical components should be further constructed and improved;the atmospheric chemical mechanisms should be vigorously developed,and standardized methods for determining the O_(3)formation sensitivity should be established in China in the near future.
基金the National Natural Science Foundation of China (50122155)
文摘Based on the dynamics of ABS-equipped vehicles during cornering braking, the electronic brake- force distribution (EBD) control methods of ABS-equipped vehicles during cornering braking are proposed. According to the dynamics and the tire model under tire adhesion limit, the stability acceptance criteria of vehicles during cornering braking are proposed. According to the stability acceptance criteria and the ABS control, the EBD control methods of ABS-equipped vehicles during cornering braking are implemented by adjusting the threshold values of tires slip independently. The vehicle states during cornering braking at two typical initial velocities of the vehicle are analyzed by the EBD control methods, whose results indicate the EBD control methods can improve the braking performances of the vehicle during cornering braking comparing with the ABS control.
基金This research was supported financially by the China Postdoctoral Science Foundation,the National Natural Science Foundation of China(Grant No.51705132)the Young Backbone Teacher Training Program in Henan University of Technology,the Education Department of Henan Province Natural Science Project(Grant No.21A460006)the Natural Science Project of Henan Provincial Department of Science and Technology(Grant No.222102220088).
文摘With ongoing economic,scientific,and technological developments,the electronic devices used in daily lives are developing toward precision and miniaturization,and so the demand for high-precision manufacturing machinery is expanding.The most important piece of equipment in modern high-precision manufacturing is the macro-micro motion platform(M3P),which offers high speed,precision,and efficiency and has macro-micro motion coupling characteristics due to its mechanical design and composition of its driving components.Therefore,the design of the control system is crucial for the overall precision of the platform;conventional proportional–integral–derivative control cannot meet the system requirements,and so M3Ps are the subject of a growing range of modern control strategies.This paper begins by describing the development history of M3Ps,followed by their platform structure and motion control system components,and then in-depth assessments of the macro,micro,and macro-micro control systems.In addition to examining the advantages and disadvantages of current macro-micro motion control,recent technological breakthroughs are noted.Finally,based on existing problems,future directions for M3P control systems are given,and the present conclusions offer guidelines for future work on M3Ps.
文摘Metals and metalloids(termed as metals in this article)are important constituent elements of the earth's crust.A number of metals,if present in excess,are toxic to organisms and therefore they are usually defined as toxic metals.
基金Project supported by the National Key Research and Development Program of China(No.2022YFB3203600)the National Natural Science Foundation of China(Nos.12172323,12132013+1 种基金12332003)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22A020003)。
文摘In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers.
基金supported by the Na-tional Natural Science Foundation of China(No.52272369).
文摘Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.
基金supported by the National Natural Science Foundation of China(11871312,12131014)the Natural Science Foundation of Shandong Province,China(ZR2023MA086)。
文摘A bicubic B-spline finite element method is proposed to solve optimal control problems governed by fourth-order semilinear parabolic partial differential equations.Its key feature is the selection of bicubic B-splines as trial functions to approximate the state and costate variables in two space dimensions.A Crank-Nicolson difference scheme is constructed for time discretization.The resulting numerical solutions belong to C2in space,and the order of the coefficient matrix is low.Moreover,the Bogner-Fox-Schmit element is considered for comparison.Two numerical experiments demonstrate the feasibility and effectiveness of the proposed method.