The identification of important nodes in a power grid has considerable benefits for safety. Power networks vary in many aspects, such as scale and structure. An index system can hardly cover all the information in var...The identification of important nodes in a power grid has considerable benefits for safety. Power networks vary in many aspects, such as scale and structure. An index system can hardly cover all the information in various situations. Therefore, the efficiency of traditional methods using an index system is case-dependent and not universal. To solve this problem, an artificial intelligence based method is proposed for evaluating power grid node importance. First, using a network embedding approach, a feature extraction method is designed for power grid nodes, considering their structural and electrical information. Then, for a specific power network, steady-state and node fault transient simulations under various operation modes are performed to establish the sample set. The sample set can reflect the relationship between the node features and the corresponding importance. Finally, a support vector regression model is trained based on the optimized sample set for the later online use of importance evaluation. A case study demonstrates that the proposed method can effectively evaluate node importance for a power grid based on the information learned from the samples. Compared with traditional methods using an index system, the proposed method can avoid some possible bias. In addition, a particular sample set for each specific power network can be established under this artificial intelligence based framework, meeting the demand of universality.展开更多
In this paper, we present a malicious node detection scheme using confidence-level evaluation in a grid-based wireless sensor network. The sensor field is divided into square grids, where sensor nodes in each grid for...In this paper, we present a malicious node detection scheme using confidence-level evaluation in a grid-based wireless sensor network. The sensor field is divided into square grids, where sensor nodes in each grid form a cluster with a cluster head. Each cluster head maintains the confidence levels of its member nodes based on their readings and reflects them in decision-making. Two thresholds are used to distinguish between false alarms due to malicious nodes and events. In addition, the center of an event region is estimated, if necessary, to enhance the event and malicious node detection accuracy. Experimental results show that the scheme can achieve high malicious node detection accuracy without sacrificing normal sensor nodes.展开更多
In view of the relative positioning problem between non-regular quadrilateral grids and regular rectangle grid nodes in the wave front construction method, concrete realization problems with four grid positioning meth...In view of the relative positioning problem between non-regular quadrilateral grids and regular rectangle grid nodes in the wave front construction method, concrete realization problems with four grid positioning methods (vector cross product judgment, angle sum, intersection-point, and signs comparison algorithms) in wave front construction which are commonly used in computer graphics are compared and analyzed in this paper. Based on the stability analysis of the location method, the calculation examples show that the vector cross product judgment method is faster and more accurate than other methods in the realization of the relative positioning between non-regular quadrilateral grids and regular rectangle grid nodes in wave front construction. It provides precise grid point attribute values for the next steps of migration and demigration.展开更多
The importance of computational grids in hydraulic numerical models is studied by numerical simulation of jet flow in a rectangular duct which is linked with a fixed width inlet and a different width outlet using a st...The importance of computational grids in hydraulic numerical models is studied by numerical simulation of jet flow in a rectangular duct which is linked with a fixed width inlet and a different width outlet using a standard k-epsilon turbulence model. The computational results show the numerical solutions may not be reasonable because of the incorrect computational grid and each numerical model bass grid-independent solution. The computational grid has a definitive effect on the accuracy and stability of the computational solution, which must be divided well according to the simulated geometry and physical characters of hydraulic problems. The main guidelines about the formation of computational grid in such aspects as node distribution, smoothness and skewness of grid, have been given.展开更多
SG (smart grids) is an intelligent power grid in which the diverse nodes should communicate different types of information which have different communication requirements with CS (control stations). There exist se...SG (smart grids) is an intelligent power grid in which the diverse nodes should communicate different types of information which have different communication requirements with CS (control stations). There exist several RATs (radio access technologies), with diversification in quality of service character which respect to the SG nodes communication requirements. On the other side, spectrum is becoming a rare source and its demands request is increasing exponentially. Therefore, resource allocation to support different types of SG nodes should be elaborated so that the resource efficiency is maximized while the SG communication requirements are respected. Using a CF (cost function) based on the SG node requirements and RATs characteristics to find the desirability value of every RATs for a certain node type accomplish this goal in combination with prioritizing the different SG nodes types based on SG goals by creating a priority table for RATs and different SG node types. The main node communication requirements are formulized to be used in the CF in this paper. The numerical results show that the proposed method defines the desirability value of each RAT for a certain SG node type that helps to make a priority table by using the SG node prioritization table.展开更多
Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective funct...Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.展开更多
The state-of-the-art query techniques in power grid monitoring systems focus on querying history data, which typically introduces an unwanted lag when the systems try to discover emergency situations. The monitoring d...The state-of-the-art query techniques in power grid monitoring systems focus on querying history data, which typically introduces an unwanted lag when the systems try to discover emergency situations. The monitoring data of large-scale smart grids are massive, dynamic and highly dimensional, so global query, the method widely adopted in continuous queries in Wireless Sensor Networks(WSN), is rendered not suitable for its high energy consumption. The situation is even worse with increasing application complexity. We propose an energy-efficient query technique for large-scale smart grids based on variable regions. This method can query an arbitrary region based on variable physical windows, and optimizes data retrieve paths by a key nodes selection strategy. According to the characteristics of sensing data, we introduce an efficient filter into the each query subtree to keep non-skyline data from being retrieved. Experimental results show that our method can efficiently return the overview situation of any query region. Compared to TAG and ESA, the average query efficiency of our approach is improved by 79% and 46%, respectively; the total energy consumption of regional query is decreased by 82% and 50%, respectively.展开更多
文摘The identification of important nodes in a power grid has considerable benefits for safety. Power networks vary in many aspects, such as scale and structure. An index system can hardly cover all the information in various situations. Therefore, the efficiency of traditional methods using an index system is case-dependent and not universal. To solve this problem, an artificial intelligence based method is proposed for evaluating power grid node importance. First, using a network embedding approach, a feature extraction method is designed for power grid nodes, considering their structural and electrical information. Then, for a specific power network, steady-state and node fault transient simulations under various operation modes are performed to establish the sample set. The sample set can reflect the relationship between the node features and the corresponding importance. Finally, a support vector regression model is trained based on the optimized sample set for the later online use of importance evaluation. A case study demonstrates that the proposed method can effectively evaluate node importance for a power grid based on the information learned from the samples. Compared with traditional methods using an index system, the proposed method can avoid some possible bias. In addition, a particular sample set for each specific power network can be established under this artificial intelligence based framework, meeting the demand of universality.
文摘In this paper, we present a malicious node detection scheme using confidence-level evaluation in a grid-based wireless sensor network. The sensor field is divided into square grids, where sensor nodes in each grid form a cluster with a cluster head. Each cluster head maintains the confidence levels of its member nodes based on their readings and reflects them in decision-making. Two thresholds are used to distinguish between false alarms due to malicious nodes and events. In addition, the center of an event region is estimated, if necessary, to enhance the event and malicious node detection accuracy. Experimental results show that the scheme can achieve high malicious node detection accuracy without sacrificing normal sensor nodes.
基金This research work is supported by the Projects of National Science Foundation of China (Grant No, 40574052 and 40437018) and National Basic Research Program of China (973 Program) (Grant No. 2007CB209603).Acknowledgements We wish to thank Researcher Xu Tao for his advice and comment. We also thank Mrs. Wang Kun for her help in the process of translation.
文摘In view of the relative positioning problem between non-regular quadrilateral grids and regular rectangle grid nodes in the wave front construction method, concrete realization problems with four grid positioning methods (vector cross product judgment, angle sum, intersection-point, and signs comparison algorithms) in wave front construction which are commonly used in computer graphics are compared and analyzed in this paper. Based on the stability analysis of the location method, the calculation examples show that the vector cross product judgment method is faster and more accurate than other methods in the realization of the relative positioning between non-regular quadrilateral grids and regular rectangle grid nodes in wave front construction. It provides precise grid point attribute values for the next steps of migration and demigration.
文摘The importance of computational grids in hydraulic numerical models is studied by numerical simulation of jet flow in a rectangular duct which is linked with a fixed width inlet and a different width outlet using a standard k-epsilon turbulence model. The computational results show the numerical solutions may not be reasonable because of the incorrect computational grid and each numerical model bass grid-independent solution. The computational grid has a definitive effect on the accuracy and stability of the computational solution, which must be divided well according to the simulated geometry and physical characters of hydraulic problems. The main guidelines about the formation of computational grid in such aspects as node distribution, smoothness and skewness of grid, have been given.
文摘SG (smart grids) is an intelligent power grid in which the diverse nodes should communicate different types of information which have different communication requirements with CS (control stations). There exist several RATs (radio access technologies), with diversification in quality of service character which respect to the SG nodes communication requirements. On the other side, spectrum is becoming a rare source and its demands request is increasing exponentially. Therefore, resource allocation to support different types of SG nodes should be elaborated so that the resource efficiency is maximized while the SG communication requirements are respected. Using a CF (cost function) based on the SG node requirements and RATs characteristics to find the desirability value of every RATs for a certain node type accomplish this goal in combination with prioritizing the different SG nodes types based on SG goals by creating a priority table for RATs and different SG node types. The main node communication requirements are formulized to be used in the CF in this paper. The numerical results show that the proposed method defines the desirability value of each RAT for a certain SG node type that helps to make a priority table by using the SG node prioritization table.
基金supported by the the Youth Science and Technology Innovation Fund (Science)(Nos.NS2014070, NS2014070)
文摘Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.
基金supported by the National Natural Science Foundation of China (NO. 61472072, 61528202, 61501105, 61472169)the Foundation of Science Public Welfare of Liaoning Province in China (NO. 2015003003)
文摘The state-of-the-art query techniques in power grid monitoring systems focus on querying history data, which typically introduces an unwanted lag when the systems try to discover emergency situations. The monitoring data of large-scale smart grids are massive, dynamic and highly dimensional, so global query, the method widely adopted in continuous queries in Wireless Sensor Networks(WSN), is rendered not suitable for its high energy consumption. The situation is even worse with increasing application complexity. We propose an energy-efficient query technique for large-scale smart grids based on variable regions. This method can query an arbitrary region based on variable physical windows, and optimizes data retrieve paths by a key nodes selection strategy. According to the characteristics of sensing data, we introduce an efficient filter into the each query subtree to keep non-skyline data from being retrieved. Experimental results show that our method can efficiently return the overview situation of any query region. Compared to TAG and ESA, the average query efficiency of our approach is improved by 79% and 46%, respectively; the total energy consumption of regional query is decreased by 82% and 50%, respectively.