The dispatching center of power-grid companies is also the data center of the power grid where gathers great amount of operating information. The valuable information contained in these data means a lot for power grid...The dispatching center of power-grid companies is also the data center of the power grid where gathers great amount of operating information. The valuable information contained in these data means a lot for power grid operating management, but at present there is no special method for the management of operating data resource. This paper introduces the operating analysis and data mining system for power grid dispatching. The technique of data warehousing online analytical processing has been used to manage and analysis the great capacity of data. This analysis system is based on the real-time data of the power grid to dig out the potential rule of the power grid operating. This system also provides a research platform for the dispatchers, help to improve the JIT (Just in Time) management of power system.展开更多
With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,whic...With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,which makes operation and control of power grids face severe security challenges.Application of artificial intelligence(AI)technologies represented by machine learning in power grid regulation is limited by reliability,interpretability and generalization ability of complex modeling.Mode of hybrid-augmented intelligence(HAI)based on human-machine collaboration(HMC)is a pivotal direction for future development of AI technology in this field.Based on characteristics of applications in power grid regulation,this paper discusses system architecture and key technologies of human-machine hybrid-augmented intelligence(HHI)system for large-scale power grid dispatching and control(PGDC).First,theory and application scenarios of HHI are introduced and analyzed;then physical and functional architectures of HHI system and human-machine collaborative regulation process are proposed.Key technologies are discussed to achieve a thorough integration of human/machine intelligence.Finally,state-of-theart and future development of HHI in power grid regulation are summarized,aiming to efficiently improve the intelligent level of power grid regulation in a human-machine interactive and collaborative way.展开更多
A project named "A New Generation of Energy Management with Three Dimensional Coordination" has recently passed technical appraisal from the Ministry of Education. The project has been developed over the past 15 yea...A project named "A New Generation of Energy Management with Three Dimensional Coordination" has recently passed technical appraisal from the Ministry of Education. The project has been developed over the past 15 years by a research team led by Professor Zhang Boming from Tsinghua's Department of Electrical Engineering.展开更多
The power grid is a fusion of technologies in energy systems, and how to adjust and control the output power of each generator to balance the load of the grid is a crucial issue. As a platform, the smart grid is for t...The power grid is a fusion of technologies in energy systems, and how to adjust and control the output power of each generator to balance the load of the grid is a crucial issue. As a platform, the smart grid is for the convenience of the implementation of adaptive control generators using advanced technologies. In this paper, we are introducing a new approach, the Central Lower Configuration Table, which optimizes dispatch of the generating capacity in a smart grid power system. The dispatch strategy of each generator in the grid is presented in the configuration table, and the scenario consists of two-level agents. A central agent optimizes dispatch calculation to get the configuration table, and a lower agent controls generators according to the tasks of the central level and the work states during generation. The central level is major optimization and adjustment. We used machine learning to predict the power load and address the best optimize cost function to deal with a different control strategy. We designed the items of the cost function, such as operations, maintenances and the effects on the environment. Then, according to the total cost, we got a new second-rank-sort table. As a result, we can resolve generator’s task based on the table, which can also be updated on-line based on the environmental situation. The signs of the driving generator’s controller include active power and system’s f. The lower control level agent carries out the generator control to track f along with the best optimized cost function. Our approach makes optimized dispatch algorithm more convenient to realize, and the numerical simulation indicates the strategy of machine learning forecast of optimized power dispatch is effective.展开更多
该文基于大电网运行实践,聚焦于全网电力平衡资源的统一优化,研究新型电力系统的全网一体化电力平衡(integrated power balancing,IPB)机理。首先,构建IPB的数学模型,其中涉及“平衡区域”、“输电通道”和“输电路径”等关键要素。基...该文基于大电网运行实践,聚焦于全网电力平衡资源的统一优化,研究新型电力系统的全网一体化电力平衡(integrated power balancing,IPB)机理。首先,构建IPB的数学模型,其中涉及“平衡区域”、“输电通道”和“输电路径”等关键要素。基于数学模型,推导IPB的网络方程,用以描述网络结构约束;其次,将电力平衡目标如电力供应和新能源消纳等与网络方程结合,推导作为IPB基本数学原理的动态方程,方程由4种过程形式组成——自然互济供电、成本互济供电、自然互济新能源消纳和成本互济新能源消纳;再次,将实际工程条件引入动态方程,分析总结工程实践用一体化电力平衡基础模式及其衍生的8种子构型;最后,通过实例验证所提理论分析的有效性和意义。展开更多
文摘The dispatching center of power-grid companies is also the data center of the power grid where gathers great amount of operating information. The valuable information contained in these data means a lot for power grid operating management, but at present there is no special method for the management of operating data resource. This paper introduces the operating analysis and data mining system for power grid dispatching. The technique of data warehousing online analytical processing has been used to manage and analysis the great capacity of data. This analysis system is based on the real-time data of the power grid to dig out the potential rule of the power grid operating. This system also provides a research platform for the dispatchers, help to improve the JIT (Just in Time) management of power system.
基金supported by the National Key R&D Program of China(2018AAA0101500).
文摘With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,which makes operation and control of power grids face severe security challenges.Application of artificial intelligence(AI)technologies represented by machine learning in power grid regulation is limited by reliability,interpretability and generalization ability of complex modeling.Mode of hybrid-augmented intelligence(HAI)based on human-machine collaboration(HMC)is a pivotal direction for future development of AI technology in this field.Based on characteristics of applications in power grid regulation,this paper discusses system architecture and key technologies of human-machine hybrid-augmented intelligence(HHI)system for large-scale power grid dispatching and control(PGDC).First,theory and application scenarios of HHI are introduced and analyzed;then physical and functional architectures of HHI system and human-machine collaborative regulation process are proposed.Key technologies are discussed to achieve a thorough integration of human/machine intelligence.Finally,state-of-theart and future development of HHI in power grid regulation are summarized,aiming to efficiently improve the intelligent level of power grid regulation in a human-machine interactive and collaborative way.
文摘A project named "A New Generation of Energy Management with Three Dimensional Coordination" has recently passed technical appraisal from the Ministry of Education. The project has been developed over the past 15 years by a research team led by Professor Zhang Boming from Tsinghua's Department of Electrical Engineering.
文摘The power grid is a fusion of technologies in energy systems, and how to adjust and control the output power of each generator to balance the load of the grid is a crucial issue. As a platform, the smart grid is for the convenience of the implementation of adaptive control generators using advanced technologies. In this paper, we are introducing a new approach, the Central Lower Configuration Table, which optimizes dispatch of the generating capacity in a smart grid power system. The dispatch strategy of each generator in the grid is presented in the configuration table, and the scenario consists of two-level agents. A central agent optimizes dispatch calculation to get the configuration table, and a lower agent controls generators according to the tasks of the central level and the work states during generation. The central level is major optimization and adjustment. We used machine learning to predict the power load and address the best optimize cost function to deal with a different control strategy. We designed the items of the cost function, such as operations, maintenances and the effects on the environment. Then, according to the total cost, we got a new second-rank-sort table. As a result, we can resolve generator’s task based on the table, which can also be updated on-line based on the environmental situation. The signs of the driving generator’s controller include active power and system’s f. The lower control level agent carries out the generator control to track f along with the best optimized cost function. Our approach makes optimized dispatch algorithm more convenient to realize, and the numerical simulation indicates the strategy of machine learning forecast of optimized power dispatch is effective.
文摘该文基于大电网运行实践,聚焦于全网电力平衡资源的统一优化,研究新型电力系统的全网一体化电力平衡(integrated power balancing,IPB)机理。首先,构建IPB的数学模型,其中涉及“平衡区域”、“输电通道”和“输电路径”等关键要素。基于数学模型,推导IPB的网络方程,用以描述网络结构约束;其次,将电力平衡目标如电力供应和新能源消纳等与网络方程结合,推导作为IPB基本数学原理的动态方程,方程由4种过程形式组成——自然互济供电、成本互济供电、自然互济新能源消纳和成本互济新能源消纳;再次,将实际工程条件引入动态方程,分析总结工程实践用一体化电力平衡基础模式及其衍生的8种子构型;最后,通过实例验证所提理论分析的有效性和意义。