期刊文献+
共找到1,394篇文章
< 1 2 70 >
每页显示 20 50 100
Providing Robust and Low-Cost Edge Computing in Smart Grid:An Energy Harvesting Based Task Scheduling and Resource Management Framework 被引量:1
1
作者 Xie Zhigang Song Xin +1 位作者 Xu Siyang Cao Jing 《China Communications》 2025年第2期226-240,共15页
Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power sta... Recently,one of the main challenges facing the smart grid is insufficient computing resources and intermittent energy supply for various distributed components(such as monitoring systems for renewable energy power stations).To solve the problem,we propose an energy harvesting based task scheduling and resource management framework to provide robust and low-cost edge computing services for smart grid.First,we formulate an energy consumption minimization problem with regard to task offloading,time switching,and resource allocation for mobile devices,which can be decoupled and transformed into a typical knapsack problem.Then,solutions are derived by two different algorithms.Furthermore,we deploy renewable energy and energy storage units at edge servers to tackle intermittency and instability problems.Finally,we design an energy management algorithm based on sampling average approximation for edge computing servers to derive the optimal charging/discharging strategies,number of energy storage units,and renewable energy utilization.The simulation results show the efficiency and superiority of our proposed framework. 展开更多
关键词 edge computing energy harvesting energy storage unit renewable energy sampling average approximation task scheduling
在线阅读 下载PDF
An Improved Task Scheduling Algorithm in Grid Computing Environment
2
作者 Liang Yu Gang Zhou Yifei Pu 《International Journal of Communications, Network and System Sciences》 2011年第4期227-231,共5页
Algorithm research of task scheduling is one of the key techniques in grid computing. This paper firstly describes a DAG task scheduling model used in grid computing environment, secondly discusses generational schedu... Algorithm research of task scheduling is one of the key techniques in grid computing. This paper firstly describes a DAG task scheduling model used in grid computing environment, secondly discusses generational scheduling (GS) and communication inclusion generational scheduling (CIGS) algorithms. Finally, an improved CIGS algorithm is proposed to use in grid computing environment, and it has been proved effectively. 展开更多
关键词 grid computing Model of task scheduling HEURISTICS ALGORITHM Dependent task scheduling ALGORITHM
在线阅读 下载PDF
Physical-layer secure hybrid task scheduling and resource management for fog computing IoT networks
3
作者 ZHANG Shibo GAO Hongyuan +1 位作者 SU Yumeng SUN Rongchen 《Journal of Systems Engineering and Electronics》 2025年第5期1146-1160,共15页
Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems... Fog computing has emerged as an important technology which can improve the performance of computation-intensive and latency-critical communication networks.Nevertheless,the fog computing Internet-of-Things(IoT)systems are susceptible to malicious eavesdropping attacks during the information transmission,and this issue has not been adequately addressed.In this paper,we propose a physical-layer secure fog computing IoT system model,which is able to improve the physical layer security of fog computing IoT networks against the malicious eavesdropping of multiple eavesdroppers.The secrecy rate of the proposed model is analyzed,and the quantum galaxy–based search algorithm(QGSA)is proposed to solve the hybrid task scheduling and resource management problem of the network.The computational complexity and convergence of the proposed algorithm are analyzed.Simulation results validate the efficiency of the proposed model and reveal the influence of various environmental parameters on fog computing IoT networks.Moreover,the simulation results demonstrate that the proposed hybrid task scheduling and resource management scheme can effectively enhance secrecy performance across different communication scenarios. 展开更多
关键词 fog computing Internet-of-Things(IoT) physical layer security hybrid task scheduling and resource management quantum galaxy-based search algorithm(QGSA)
在线阅读 下载PDF
Innovative Approaches to Task Scheduling in Cloud Computing Environments Using an Advanced Willow Catkin Optimization Algorithm
4
作者 Jeng-Shyang Pan Na Yu +3 位作者 Shu-Chuan Chu An-Ning Zhang Bin Yan Junzo Watada 《Computers, Materials & Continua》 2025年第2期2495-2520,共26页
The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resource... The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s performance by augmenting its global search capability through a quasi-opposition-based learning strategy and accelerating its convergence speed via sinusoidal mapping. A comprehensive evaluation utilizing the CEC2014 benchmark suite, comprising 30 test functions, demonstrates that AWCO achieves superior optimization outcomes, surpassing conventional WCO and a range of established meta-heuristics. The proposed algorithm also considers trade-offs among the cost, makespan, and load balancing objectives. Experimental results of AWCO are compared with those obtained using the other meta-heuristics, illustrating that the proposed algorithm provides superior performance in task scheduling. The method offers a robust foundation for enhancing the utilization of cloud computing resources in the domain of task scheduling within a cloud computing environment. 展开更多
关键词 Willow catkin optimization algorithm cloud computing task scheduling opposition-based learning strategy
在线阅读 下载PDF
A Bioinspired Method for Optimal Task Scheduling in Fog-Cloud Environment
5
作者 Ferzat Anka Ghanshyam G.Tejani +1 位作者 Sunil Kumar Sharma Mohammed Baljon 《Computer Modeling in Engineering & Sciences》 2025年第3期2691-2724,共34页
Due to the intense data flow in expanding Internet of Things(IoT)applications,a heavy processing cost and workload on the fog-cloud side become inevitable.One of the most critical challenges is optimal task scheduling... Due to the intense data flow in expanding Internet of Things(IoT)applications,a heavy processing cost and workload on the fog-cloud side become inevitable.One of the most critical challenges is optimal task scheduling.Since this is an NP-hard problem type,a metaheuristic approach can be a good option.This study introduces a novel enhancement to the Artificial Rabbits Optimization(ARO)algorithm by integrating Chaotic maps and Levy flight strategies(CLARO).This dual approach addresses the limitations of standard ARO in terms of population diversity and convergence speed.It is designed for task scheduling in fog-cloud environments,optimizing energy consumption,makespan,and execution time simultaneously three critical parameters often treated individually in prior works.Unlike conventional single-objective methods,the proposed approach incorporates a multi-objective fitness function that dynamically adjusts the weight of each parameter,resulting in better resource allocation and load balancing.In analysis,a real-world dataset,the Open-source Google Cloud Jobs Dataset(GoCJ_Dataset),is used for performance measurement,and analyses are performed on three considered parameters.Comparisons are applied with well-known algorithms:GWO,SCSO,PSO,WOA,and ARO to indicate the reliability of the proposed method.In this regard,performance evaluation is performed by assigning these tasks to Virtual Machines(VMs)in the resource pool.Simulations are performed on 90 base cases and 30 scenarios for each evaluation parameter.The results indicated that the proposed algorithm achieved the best makespan performance in 80% of cases,ranked first in execution time in 61%of cases,and performed best in the final parameter in 69% of cases.In addition,according to the obtained results based on the defined fitness function,the proposed method(CLARO)is 2.52%better than ARO,3.95%better than SCSO,5.06%better than GWO,8.15%better than PSO,and 9.41%better than WOA. 展开更多
关键词 Improved ARO fog computing task scheduling GoCJ_Dataset chaotic map levy flight
在线阅读 下载PDF
Enhanced Hybrid Equilibrium Strategy in Fog-Cloud Computing Networks with Optimal Task Scheduling
6
作者 Muchang Rao Hang Qin 《Computers, Materials & Continua》 SCIE EI 2024年第5期2647-2672,共26页
More devices in the Intelligent Internet of Things(AIoT)result in an increased number of tasks that require low latency and real-time responsiveness,leading to an increased demand for computational resources.Cloud com... More devices in the Intelligent Internet of Things(AIoT)result in an increased number of tasks that require low latency and real-time responsiveness,leading to an increased demand for computational resources.Cloud computing’s low-latency performance issues in AIoT scenarios have led researchers to explore fog computing as a complementary extension.However,the effective allocation of resources for task execution within fog environments,characterized by limitations and heterogeneity in computational resources,remains a formidable challenge.To tackle this challenge,in this study,we integrate fog computing and cloud computing.We begin by establishing a fog-cloud environment framework,followed by the formulation of a mathematical model for task scheduling.Lastly,we introduce an enhanced hybrid Equilibrium Optimizer(EHEO)tailored for AIoT task scheduling.The overarching objective is to decrease both the makespan and energy consumption of the fog-cloud system while accounting for task deadlines.The proposed EHEO method undergoes a thorough evaluation against multiple benchmark algorithms,encompassing metrics likemakespan,total energy consumption,success rate,and average waiting time.Comprehensive experimental results unequivocally demonstrate the superior performance of EHEO across all assessed metrics.Notably,in the most favorable conditions,EHEO significantly diminishes both the makespan and energy consumption by approximately 50%and 35.5%,respectively,compared to the secondbest performing approach,which affirms its efficacy in advancing the efficiency of AIoT task scheduling within fog-cloud networks. 展开更多
关键词 Artificial intelligence of things fog computing task scheduling equilibrium optimizer differential evaluation algorithm local search
在线阅读 下载PDF
Dynamic access task scheduling of LEO constellation based on space-based distributed computing
7
作者 LIU Wei JIN Yifeng +2 位作者 ZHANG Lei GAO Zihe TAO Ying 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第4期842-854,共13页
A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process u... A dynamic multi-beam resource allocation algorithm for large low Earth orbit(LEO)constellation based on on-board distributed computing is proposed in this paper.The allocation is a combinatorial optimization process under a series of complex constraints,which is important for enhancing the matching between resources and requirements.A complex algorithm is not available because that the LEO on-board resources is limi-ted.The proposed genetic algorithm(GA)based on two-dimen-sional individual model and uncorrelated single paternal inheri-tance method is designed to support distributed computation to enhance the feasibility of on-board application.A distributed system composed of eight embedded devices is built to verify the algorithm.A typical scenario is built in the system to evalu-ate the resource allocation process,algorithm mathematical model,trigger strategy,and distributed computation architec-ture.According to the simulation and measurement results,the proposed algorithm can provide an allocation result for more than 1500 tasks in 14 s and the success rate is more than 91%in a typical scene.The response time is decreased by 40%com-pared with the conditional GA. 展开更多
关键词 beam resource allocation distributed computing low Earth obbit(LEO)constellation spacecraft access task scheduling
在线阅读 下载PDF
Hybrid Task Scheduling Algorithm for Makespan Optimisation in Cloud Computing: A Performance Evaluation
8
作者 Abdulrahman M.Abdulghani 《Journal on Artificial Intelligence》 2024年第1期241-259,共19页
Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and r... Cloud computing has rapidly evolved into a critical technology,seamlessly integrating into various aspects of daily life.As user demand for cloud services continues to surge,the need for efficient virtualization and resource management becomes paramount.At the core of this efficiency lies task scheduling,a complex process that determines how tasks are allocated and executed across cloud resources.While extensive research has been conducted in the area of task scheduling,optimizing multiple objectives simultaneously remains a significant challenge due to the NP(Non-deterministic Polynomial)Complete nature of the problem.This study aims to address these challenges by providing a comprehensive review and experimental analysis of task scheduling approaches,with a particular focus on hybrid techniques that offer promising solutions.Utilizing the CloudSim simulation toolkit,we evaluated the performance of three hybrid algorithms:Estimation of Distribution Algorithm-Genetic Algorithm(EDA-GA),Hybrid Genetic Algorithm-Ant Colony Optimization(HGA-ACO),and Improved Discrete Particle Swarm Optimization(IDPSO).Our experimental results demonstrate that these hybrid methods significantly outperform traditional standalone algorithms in reducing Makespan,which is a critical measure of task completion time.Notably,the IDPSO algorithm exhibited superior performance,achieving a Makespan of just 0.64 milliseconds for a set of 150 tasks.These findings underscore the potential of hybrid algorithms to enhance task scheduling efficiency in cloud computing environments.This paper concludes with a discussion of the implications of our findings and offers recommendations for future research aimed at further improving task scheduling strategies,particularly in the context of increasingly complex and dynamic cloud environments. 展开更多
关键词 MAKESPAN multi-objective optimisation task scheduling cloud computing hybrid algorithms
在线阅读 下载PDF
ACS-based resource assignment and task scheduling in grid
9
作者 祁超 张璟 李军怀 《Journal of Southeast University(English Edition)》 EI CAS 2007年第3期451-454,共4页
To solve the deadlock problem of tasks that the interdependence between tasks fails to consider during the course of resource assignment and task scheduling based on the heuristics algorithm, an improved ant colony sy... To solve the deadlock problem of tasks that the interdependence between tasks fails to consider during the course of resource assignment and task scheduling based on the heuristics algorithm, an improved ant colony system (ACS) based algorithm is proposed. First, how to map the resource assignment and task scheduling (RATS) problem into the optimization selection problem of task resource assignment graph (TRAG) and to add the semaphore mechanism in the optimal TRAG to solve deadlocks are explained. Secondly, how to utilize the grid pheromone system model to realize the algorithm based on ACS is explicated. This refers to the construction of TRAG by the random selection of appropriate resources for each task by the user agent and the optimization of TRAG through the positive feedback and distributed parallel computing mechanism of the ACS. Simulation results show that the proposed algorithm is effective and efficient in solving the deadlock problem. 展开更多
关键词 grid resource assignment task scheduling ant colony system (ACS) task resource assignment graph (TRAG) SEMAPHORE
在线阅读 下载PDF
AMTS:Adaptive Multi-Objective Task Scheduling Strategy in Cloud Computing
10
作者 HE Hua XU Guangquan +1 位作者 PANG Shanchen ZHAO Zenghua 《China Communications》 SCIE CSCD 2016年第4期162-171,共10页
Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consump... Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consumption and Quality of Service(QoS) requirements under the changing environment and diverse tasks. Considering both processing time and transmission time, a PSO-based Adaptive Multi-objective Task Scheduling(AMTS) Strategy is proposed in this paper. First, the task scheduling problem is formulated. Then, a task scheduling policy is advanced to get the optimal resource utilization, task completion time, average cost and average energy consumption. In order to maintain the particle diversity, the adaptive acceleration coefficient is adopted. Experimental results show that the improved PSO algorithm can obtain quasi-optimal solutions for the cloud task scheduling problem. 展开更多
关键词 quality of service cloud computing multi-objective task scheduling particle swarm optimization(PSO) small position value(SPV)
在线阅读 下载PDF
Optimization Task Scheduling Using Cooperation Search Algorithm for Heterogeneous Cloud Computing Systems 被引量:2
11
作者 Ahmed Y.Hamed M.Kh.Elnahary +1 位作者 Faisal S.Alsubaei Hamdy H.El-Sayed 《Computers, Materials & Continua》 SCIE EI 2023年第1期2133-2148,共16页
Cloud computing has taken over the high-performance distributed computing area,and it currently provides on-demand services and resource polling over the web.As a result of constantly changing user service demand,the ... Cloud computing has taken over the high-performance distributed computing area,and it currently provides on-demand services and resource polling over the web.As a result of constantly changing user service demand,the task scheduling problem has emerged as a critical analytical topic in cloud computing.The primary goal of scheduling tasks is to distribute tasks to available processors to construct the shortest possible schedule without breaching precedence restrictions.Assignments and schedules of tasks substantially influence system operation in a heterogeneous multiprocessor system.The diverse processes inside the heuristic-based task scheduling method will result in varying makespan in the heterogeneous computing system.As a result,an intelligent scheduling algorithm should efficiently determine the priority of every subtask based on the resources necessary to lower the makespan.This research introduced a novel efficient scheduling task method in cloud computing systems based on the cooperation search algorithm to tackle an essential task and schedule a heterogeneous cloud computing problem.The basic idea of thismethod is to use the advantages of meta-heuristic algorithms to get the optimal solution.We assess our algorithm’s performance by running it through three scenarios with varying numbers of tasks.The findings demonstrate that the suggested technique beats existingmethods NewGenetic Algorithm(NGA),Genetic Algorithm(GA),Whale Optimization Algorithm(WOA),Gravitational Search Algorithm(GSA),and Hybrid Heuristic and Genetic(HHG)by 7.9%,2.1%,8.8%,7.7%,3.4%respectively according to makespan. 展开更多
关键词 Heterogeneous processors cooperation search algorithm task scheduling cloud computing
在线阅读 下载PDF
Flexible Task Scheduling Based on Edge Computing and Cloud Collaboration 被引量:3
12
作者 Suzhen Wang Wenli Wang +1 位作者 Zhiting Jia Chaoyi Pang 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期1241-1255,共15页
With the rapid development and popularization of 5G and the Internetof Things, a number of new applications have emerged, such as driverless cars.Most of these applications are time-delay sensitive, and some deficienc... With the rapid development and popularization of 5G and the Internetof Things, a number of new applications have emerged, such as driverless cars.Most of these applications are time-delay sensitive, and some deficiencies werefound during data processing through the cloud centric architecture. The data generated by terminals at the edge of the network is an urgent problem to be solved atpresent. In 5 g environments, edge computing can better meet the needs of lowdelay and wide connection applications, and support the fast request of terminalusers. However, edge computing only has the edge layer computing advantage,and it is difficult to achieve global resource scheduling and configuration, whichmay lead to the problems of low resource utilization rate, long task processingdelay and unbalanced system load, so as to lead to affect the service quality ofusers. To solve this problem, this paper studies task scheduling and resource collaboration based on a Cloud-Edge-Terminal collaborative architecture, proposes agenetic simulated annealing fusion algorithm, called GSA-EDGE, to achieve taskscheduling and resource allocation, and designs a series of experiments to verifythe effectiveness of the GSA-EDGE algorithm. The experimental results showthat the proposed method can reduce the time delay of task processing comparedwith the local task processing method and the task average allocation method. 展开更多
关键词 Edge computing “cloud-edge-terminal”framework task scheduling and resource allocation
在线阅读 下载PDF
A New Task Scheduling Scheme Based on Genetic Algorithm for Edge Computing 被引量:1
13
作者 Zhang Nan Li Wenjing +3 位作者 Liu Zhu Li Zhi Liu Yumin Nurun Nahar 《Computers, Materials & Continua》 SCIE EI 2022年第4期843-854,共12页
With the continuous evolution of smart grid and global energy interconnection technology,amount of intelligent terminals have been connected to power grid,which can be used for providing resource services as edge node... With the continuous evolution of smart grid and global energy interconnection technology,amount of intelligent terminals have been connected to power grid,which can be used for providing resource services as edge nodes.Traditional cloud computing can be used to provide storage services and task computing services in the power grid,but it faces challenges such as resource bottlenecks,time delays,and limited network bandwidth resources.Edge computing is an effective supplement for cloud computing,because it can provide users with local computing services with lower latency.However,because the resources in a single edge node are limited,resource-intensive tasks need to be divided into many subtasks and then assigned to different edge nodes by resource cooperation.Making task scheduling more efficient is an important issue.In this paper,a two-layer resource management scheme is proposed based on the concept of edge computing.In addition,a new task scheduling algorithm named GA-EC(Genetic Algorithm for Edge Computing)is put forth,based on a genetic algorithm,that can dynamically schedule tasks according to different scheduling goals.The simulation shows that the proposed algorithm has a beneficial effect on energy consumption and load balancing,and reduces time delay. 展开更多
关键词 Smart grid energy consumption task scheduling resource management
在线阅读 下载PDF
An Adaptive Genetic Algorithm-Based Load Balancing-Aware Task Scheduling Technique for Cloud Computing 被引量:1
14
作者 Mohit Agarwal Shikha Gupta 《Computers, Materials & Continua》 SCIE EI 2022年第12期6103-6119,共17页
Task scheduling in highly elastic and dynamic processing environments such as cloud computing have become the most discussed problem among researchers.Task scheduling algorithms are responsible for the allocation of t... Task scheduling in highly elastic and dynamic processing environments such as cloud computing have become the most discussed problem among researchers.Task scheduling algorithms are responsible for the allocation of the tasks among the computing resources for their execution,and an inefficient task scheduling algorithm results in under-or over-utilization of the resources,which in turn leads to degradation of the services.Therefore,in the proposed work,load balancing is considered as an important criterion for task scheduling in a cloud computing environment as it can help in reducing the overhead in the critical decision-oriented process.In this paper,we propose an adaptive genetic algorithm-based load balancing(GALB)-aware task scheduling technique that not only results in better utilization of resources but also helps in optimizing the values of key performance indicators such as makespan,performance improvement ratio,and degree of imbalance.The concept of adaptive crossover and mutation is used in this work which results in better adaptation for the fittest individual of the current generation and prevents them from the elimination.CloudSim simulator has been used to carry out the simulations and obtained results establish that the proposed GALB algorithm performs better for all the key indicators and outperforms its peers which are taken into the consideration. 展开更多
关键词 Cloud computing genetic algorithm(GA) load balancing MAKESPAN resource utilization task scheduling
在线阅读 下载PDF
Efficient Task Scheduling for Many Task Computing with Resource Attribute Selection 被引量:3
15
作者 ZHAO Yong CHEN Liang LI Youfu TIAN Wenhong 《China Communications》 SCIE CSCD 2014年第12期125-140,共16页
Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,... Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,scheduling and executing large-scale computing tasks efficiently and allocating resources to tasks reasonably are becoming a quite challenging problem.To improve both task execution and resource utilization efficiency,we present a task scheduling algorithm with resource attribute selection,which can select the optimal node to execute a task according to its resource requirements and the fitness between the resource node and the task.Experiment results show that there is significant improvement in execution throughput and resource utilization compared with the other three algorithms and four scheduling frameworks.In the scheduling algorithm comparison,the throughput is 77%higher than Min-Min algorithm and the resource utilization can reach 91%.In the scheduling framework comparison,the throughput(with work-stealing)is at least 30%higher than the other frameworks and the resource utilization reaches 94%.The scheduling algorithm can make a good model for practical MTC applications. 展开更多
关键词 task scheduling resource attribute selection many task computing resource utilization work-stealing
在线阅读 下载PDF
Hyper-Heuristic Task Scheduling Algorithm Based on Reinforcement Learning in Cloud Computing 被引量:1
16
作者 Lei Yin Chang Sun +3 位作者 Ming Gao Yadong Fang Ming Li Fengyu Zhou 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1587-1608,共22页
The solution strategy of the heuristic algorithm is pre-set and has good performance in the conventional cloud resource scheduling process.However,for complex and dynamic cloud service scheduling tasks,due to the diff... The solution strategy of the heuristic algorithm is pre-set and has good performance in the conventional cloud resource scheduling process.However,for complex and dynamic cloud service scheduling tasks,due to the difference in service attributes,the solution efficiency of a single strategy is low for such problems.In this paper,we presents a hyper-heuristic algorithm based on reinforcement learning(HHRL)to optimize the completion time of the task sequence.Firstly,In the reward table setting stage of HHRL,we introduce population diversity and integrate maximum time to comprehensively deter-mine the task scheduling and the selection of low-level heuristic strategies.Secondly,a task computational complexity estimation method integrated with linear regression is proposed to influence task scheduling priorities.Besides,we propose a high-quality candidate solution migration method to ensure the continuity and diversity of the solving process.Compared with HHSA,ACO,GA,F-PSO,etc,HHRL can quickly obtain task complexity,select appropriate heuristic strategies for task scheduling,search for the the best makspan and have stronger disturbance detection ability for population diversity. 展开更多
关键词 task scheduling cloud computing hyper-heuristic algorithm makespan optimization
在线阅读 下载PDF
Particle Swarm Optimization Embedded in Variable Neighborhood Search for Task Scheduling in Cloud Computing 被引量:1
17
作者 郭力争 王永皎 +2 位作者 赵曙光 沈士根 姜长元 《Journal of Donghua University(English Edition)》 EI CAS 2013年第2期145-152,共8页
In cloud computing system,it is a hot and hard issue to find the optimal task scheduling method that makes the processing cost and the running time minimum. In order to deal with the task assignment,a task interaction... In cloud computing system,it is a hot and hard issue to find the optimal task scheduling method that makes the processing cost and the running time minimum. In order to deal with the task assignment,a task interaction graph was used to analyze the task scheduling; a modeling for task assignment was formulated and a particle swarm optimization (PSO)algorithm embedded in the variable neighborhood search (VNS) to optimize the task scheduling was proposed. The experimental results show that the method is more effective than the PSO in processing cost,transferring cost, and running time. When the task is more complex,the effect is much better. So,the algorithm can resolve the task scheduling in cloud computing and it is feasible,valid,and efficient. 展开更多
关键词 cloud computing particle swarm optimization PSO) task scheduling variable neighborhood search VNS)
在线阅读 下载PDF
A Parallel Genetic Simulated Annealing Hybrid Algorithm for Task Scheduling 被引量:12
18
作者 SHU Wanneng ZHENG Shijue 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1378-1382,共5页
In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem i... In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing. It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively. When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole. From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing. 展开更多
关键词 grid computing task scheduling genetic algorithm simulated annealing PGSAHA algorithm
在线阅读 下载PDF
Edge Computing Task Scheduling with Joint Blockchain and Task Caching in Industrial Internet
19
作者 Yanping Chen Xuyang Bai +3 位作者 Xiaomin Jin Zhongmin Wang Fengwei Wang Li Ling 《Computers, Materials & Continua》 SCIE EI 2023年第4期2101-2117,共17页
Deploying task caching at edge servers has become an effectiveway to handle compute-intensive and latency-sensitive tasks on the industrialinternet. However, how to select the task scheduling location to reduce taskde... Deploying task caching at edge servers has become an effectiveway to handle compute-intensive and latency-sensitive tasks on the industrialinternet. However, how to select the task scheduling location to reduce taskdelay and cost while ensuring the data security and reliable communicationof edge computing remains a challenge. To solve this problem, this paperestablishes a task scheduling model with joint blockchain and task cachingin the industrial internet and designs a novel blockchain-assisted cachingmechanism to enhance system security. In this paper, the task schedulingproblem, which couples the task scheduling decision, task caching decision,and blockchain reward, is formulated as the minimum weighted cost problemunder delay constraints. This is a mixed integer nonlinear problem, which isproved to be nonconvex and NP-hard. To solve the optimal solution, thispaper proposes a task scheduling strategy algorithm based on an improvedgenetic algorithm (IGA-TSPA) by improving the genetic algorithm initializationand mutation operations to reduce the size of the initial solutionspace and enhance the optimal solution convergence speed. In addition,an Improved Least Frequently Used algorithm is proposed to improve thecontent hit rate. Simulation results show that IGA-TSPA has a faster optimalsolution-solving ability and shorter running time compared with the existingedge computing scheduling algorithms. The established task scheduling modelnot only saves 62.19% of system overhead consumption in comparison withlocal computing but also has great significance in protecting data security,reducing task processing delay, and reducing system cost. 展开更多
关键词 Edge computing task scheduling blockchain task caching industrial security
在线阅读 下载PDF
A new heuristic for task scheduling in heterogeneous computing environment
20
作者 Ehsan Ullah MUNIR Jian-zhong LI +2 位作者 Sheng-fei SHI Zhao-nian ZOU Qaisar RASOOL 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第12期1715-1723,共9页
Heterogeneous computing (HC) environment utilizes diverse resources with different computational capabilities to solve computing-intensive applications having diverse computational requirements and constraints. The ta... Heterogeneous computing (HC) environment utilizes diverse resources with different computational capabilities to solve computing-intensive applications having diverse computational requirements and constraints. The task assignment problem in HC environment can be formally defined as for a given set of tasks and machines, assigning tasks to machines to achieve the minimum makespan. In this paper we propose a new task scheduling heuristic, high standard deviation first (HSTDF), which considers the standard deviation of the expected execution time of a task as a selection criterion. Standard deviation of the ex- pected execution time of a task represents the amount of variation in task execution time on different machines. Our conclusion is that tasks having high standard deviation must be assigned first for scheduling. A large number of experiments were carried out to check the effectiveness of the proposed heuristic in different scenarios, and the comparison with the existing heuristics (Max-min, Sufferage, Segmented Min-average, Segmented Min-min, and Segmented Max-min) clearly reveals that the proposed heuristic outperforms all existing heuristics in terms of average makespan. 展开更多
关键词 Heterogeneous computing task scheduling Greedy heuristics High standard deviation first (HSTDF) heuristic
在线阅读 下载PDF
上一页 1 2 70 下一页 到第
使用帮助 返回顶部