期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Two-stage optimization of route,speed,and energy management for hybrid energy ship under sea conditions
1
作者 Xiaoyuan Luo Jiaxuan Wang +1 位作者 Xinyu Wang Xinping Guan 《iEnergy》 2025年第3期174-192,共19页
As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions an... As future ship system,hybrid energy ship system has a wide range of application prospects for solving the serious energy crisis.However,current optimization scheduling works lack the consideration of sea conditions and navigational circumstances.There-fore,this paper aims at establishing a two-stage optimization framework for hybrid energy ship power system.The proposed framework considers multiple optimizations of route,speed planning,and energy management under the constraints of sea conditions during navigation.First,a complex hybrid ship power model consisting of diesel generation system,propulsion system,energy storage system,photovoltaic power generation system,and electric boiler system is established,where sea state information and ship resistance model are considered.With objective optimization functions of cost and greenhouse gas(GHG)emissions,a two-stage optimization framework consisting of route planning,speed scheduling,and energy management is constructed.Wherein the improved A-star algorithm and grey wolf optimization algorithm are introduced to obtain the optimal solutions for route,speed,and energy optimization scheduling.Finally,simulation cases are employed to verify that the proposed two-stage optimization scheduling model can reduce load energy consumption,operating costs,and carbon emissions by 17.8%,17.39%,and 13.04%,respectively,compared with the non-optimal control group. 展开更多
关键词 Hybrid ship power system two-stage optimization dispatch speed scheduling sea conditions modified A-star algorithm improved grey wolf optimization algorithm
在线阅读 下载PDF
Localization of Acoustic Emission Source in Rock Using SMIGWO Algorithm
2
作者 Jiong Wei Fuqiang Gao +2 位作者 Jinfu Lou Lei Yang Xiaoqing Wang 《International Journal of Coal Science & Technology》 2025年第2期42-51,共10页
The Grey Wolf Optimization(GWO)algorithm is acknowledged as an effective method for rock acoustic emission localization.However,the conventional GWO algorithm encounters challenges related to solution accuracy and con... The Grey Wolf Optimization(GWO)algorithm is acknowledged as an effective method for rock acoustic emission localization.However,the conventional GWO algorithm encounters challenges related to solution accuracy and convergence speed.To address these concerns,this paper develops a Simplex Improved Grey Wolf Optimizer(SMIGWO)algorithm.The randomly generating initial populations are replaced with the iterative chaotic sequences.The search process is optimized using the convergence factor optimization algorithm based on the inverse incompleteГfunction.The simplex method is utilized to address issues related to poorly positioned grey wolves.Experimental results demonstrate that,compared to the conventional GWO algorithm-based AE localization algorithm,the proposed algorithm achieves a higher solution accuracy and showcases a shorter search time.Additionally,the algorithm demonstrates fewer convergence steps,indicating superior convergence efficiency.These findings highlight that the proposed SMIGWO algorithm offers enhanced solution accuracy,stability,and optimization performance.The benefits of the SMIGWO algorithm extend universally across various materials,such as aluminum,granite,and sandstone,showcasing consistent effectiveness irrespective of material type.Consequently,this algorithm emerges as a highly effective tool for identifying acoustic emission signals and improving the precision of rock acoustic emission localization. 展开更多
关键词 Acoustic emission Source localization Iterative chaotic mapping Simplex method grey wolf optimizer algorithm
在线阅读 下载PDF
Application of interval type-2 TSK FLS method based on IGWO algorithm in short-term photovoltaic power forecasting
3
作者 LI Jun ZENG Yuxiang 《Journal of Measurement Science and Instrumentation》 2025年第2期258-271,共14页
For short-term PV power prediction,based on interval type-2 Takagi-Sugeno-Kang fuzzy logic systems(IT2 TSK FLS),combined with improved grey wolf optimizer(IGWO)algorithm,an IGWO-IT2 TSK FLS method was proposed.Compare... For short-term PV power prediction,based on interval type-2 Takagi-Sugeno-Kang fuzzy logic systems(IT2 TSK FLS),combined with improved grey wolf optimizer(IGWO)algorithm,an IGWO-IT2 TSK FLS method was proposed.Compared with the type-1 TSK fuzzy logic system method,interval type-2 fuzzy sets could simultaneously model both intra-personal uncertainty and inter-personal uncertainty based on the training of the existing error back propagation(BP)algorithm,and the IGWO algorithm was used for training the model premise and consequent parameters to further improve the predictive performance of the model.By improving the gray wolf optimization algorithm,the early convergence judgment mechanism,nonlinear cosine adjustment strategy,and Levy flight strategy were introduced to improve the convergence speed of the algorithm and avoid the problem of falling into local optimum.The interval type-2 TSK FLS method based on the IGWO algorithm was applied to the real-world photovoltaic power time series forecasting instance.Under the same conditions,it was also compared with different IT2 TSK FLS methods,such as type I TSK FLS method,BP algorithm,genetic algorithm,differential evolution,particle swarm optimization,biogeography optimization,gray wolf optimization,etc.Experimental results showed that the proposed method based on IGWO algorithm outperformed other methods in performance,showing its effectiveness and application potential. 展开更多
关键词 photovoltaic power interval type-2 fuzzy logic system grey wolf optimizer algorithm forecast performance of model
在线阅读 下载PDF
An Inverted Pendulum System Control with Fuzzy Linear Quadratic Regulator Method:Experimental Validation
4
作者 Tayfun Abut 《Computers, Materials & Continua》 2025年第11期4023-4042,共20页
In this study,a dynamic model for an inverted pendulum system(IPS)attached to a car is created,and two different control methods are applied to control the system.The designed control algorithms aim to stabilize the p... In this study,a dynamic model for an inverted pendulum system(IPS)attached to a car is created,and two different control methods are applied to control the system.The designed control algorithms aim to stabilize the pendulum arms in the upright position and the car to reach the equilibrium position.Grey Wolf Optimization-based Linear Quadratic Regulator(GWO-LQR)and GWO-based Fuzzy LQR(FLQR)control algorithms are used in the control process.To improve the performance of the LQR and FLQR methods,the optimum values of the coefficients corresponding to the foot points of the membership functions are determined by the GWO algorithm.Both a graphic and a numerical analysis of the outcomes are provided.In the comparative analysis,it is observed that the GWO-based FLQR method reduces the settling time by 22.58% and the maximum peak value by 18.2% when evaluated in terms of the angular response of the pendulum arm.Furthermore,this approach outperformed comparable research in the literature with a settling time of 2.4 s.These findings demonstrate that the suggested GWO-based FLQR controlmethod outperforms existing literature in terms of the time required for the pendulum arm to reach equilibrium. 展开更多
关键词 Fuzzy-linear quadratic regulator control grey wolf optimization algorithm inverted pendulum system linear quadratic regulator real-time control
在线阅读 下载PDF
Maximum Power Point Tracking Control of Offshore Wind-Photovoltaic Hybrid Power Generation System with Crane-Assisted
5
作者 Xiangyang Cao Yaojie Zheng +1 位作者 Hanbin Xiao Min Xiao 《Computer Modeling in Engineering & Sciences》 2025年第4期289-334,共46页
This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mod... This study investigates the Maximum Power Point Tracking(MPPT)control method of offshore windphotovoltaic hybrid power generation system with offshore crane-assisted.A new algorithm of Global Fast Integral Sliding Mode Control(GFISMC)is proposed based on the tip speed ratio method and sliding mode control.The algorithm uses fast integral sliding mode surface and fuzzy fast switching control items to ensure that the offshore wind power generation system can track the maximum power point quickly and with low jitter.An offshore wind power generation system model is presented to verify the algorithm effect.An offshore off-grid wind-solar hybrid power generation systemis built in MATLAB/Simulink.Compared with other MPPT algorithms,this study has specific quantitative improvements in terms of convergence speed,tracking accuracy or computational efficiency.Finally,the improved algorithm is further analyzed and carried out by using Yuankuan Energy’s ModelingTech semi-physical simulation platform.The results verify the feasibility and effectiveness of the improved algorithm in the offshore wind-solar hybrid power generation system. 展开更多
关键词 Offshore wind power generation efficiency maximum power point tracking(MPPT) integral sliding mode control grey wolf optimization algorithm offshore photovoltaic cells
在线阅读 下载PDF
Swarm-Based Extreme Learning Machine Models for Global Optimization
6
作者 Mustafa Abdul Salam Ahmad Taher Azar Rana Hussien 《Computers, Materials & Continua》 SCIE EI 2022年第3期6339-6363,共25页
Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapid... Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapidly and efficiently due to its memory residence,high time and space complexity.In ELM,the hidden layer typically necessitates a huge number of nodes.Furthermore,there is no certainty that the arrangement of weights and biases within the hidden layer is optimal.To solve this problem,the traditional ELM has been hybridized with swarm intelligence optimization techniques.This paper displays five proposed hybrid Algorithms“Salp Swarm Algorithm(SSA-ELM),Grasshopper Algorithm(GOA-ELM),Grey Wolf Algorithm(GWO-ELM),Whale optimizationAlgorithm(WOA-ELM)andMoth Flame Optimization(MFO-ELM)”.These five optimizers are hybridized with standard ELM methodology for resolving the tumor type classification using gene expression data.The proposed models applied to the predication of electricity loading data,that describes the energy use of a single residence over a fouryear period.In the hidden layer,Swarm algorithms are used to pick a smaller number of nodes to speed up the execution of ELM.The best weights and preferences were calculated by these algorithms for the hidden layer.Experimental results demonstrated that the proposed MFO-ELM achieved 98.13%accuracy and this is the highest model in accuracy in tumor type classification gene expression data.While in predication,the proposed GOA-ELM achieved 0.397which is least RMSE compared to the other models. 展开更多
关键词 Extreme learning machine salp swarm optimization algorithm grasshopper optimization algorithm grey wolf optimization algorithm moth flame optimization algorithm bio-inspired optimization classification model and whale optimization algorithm
在线阅读 下载PDF
Hybridized Intelligent Neural Network Optimization Model for Forecasting Prices of Rubber in Malaysia
7
作者 Shehab Abdulhabib Alzaeemi Saratha Sathasivam +2 位作者 Majid Khan bin Majahar Ali K.G.Tay Muraly Velavan 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1471-1491,共21页
Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price o... Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price of rubber.This paper aims to propose hybrid intelligent models,which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data,spanning from January 2016 to March 2021.The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining(RBFNN-kSAT).These algorithms,including Grey Wolf Optimization Algorithm,Artificial Bee Colony Algorithm,and Particle Swarm Optimization Algorithm were utilized in the forecasting data analysis.Several factors,which affect the monthly price of rubber,such as rubber production,total exports of rubber,total imports of rubber,stocks of rubber,currency exchange rate,and crude oil prices were also considered in the analysis.To evaluate the results of the introduced model,a comparison has been conducted for each model to identify the most optimum model for forecasting the price of rubber.The findings showed that GWO with RBFNN-kSAT represents the most accurate and efficient model compared with ABC with RBFNNkSAT and PSO with RBFNN-kSAT in forecasting the price of rubber.The GWO with RBFNN-kSAT obtained the greatest average accuracy(92%),with a better correlation coefficient R=0.983871 than ABC with RBFNN-kSAT and PSO with RBFNN-kSAT.Furthermore,the empirical results of this study provided several directions for policymakers to make the right decision in terms of devising proper measures in the industry to address frequent price changes so that the Malaysian rubber industry maintains dominance in the international markets. 展开更多
关键词 Rubber prices in Malaysia grey wolf optimization algorithm radial basis functions neural network k-satisfiability commodity prices
在线阅读 下载PDF
Discrete Improved Grey Wolf Optimizer for Community Detection
8
作者 Mohammad H.Nadimi-Shahraki Ebrahim Moeini +1 位作者 Shokooh Taghian Seyedali Mirjalili 《Journal of Bionic Engineering》 SCIE EI 2023年第5期2331-2358,共28页
Detecting communities in real and complex networks is a highly contested topic in network analysis.Although many metaheuristic-based algorithms for community detection have been proposed,they still cannot effectively ... Detecting communities in real and complex networks is a highly contested topic in network analysis.Although many metaheuristic-based algorithms for community detection have been proposed,they still cannot effectively fulfill large-scale and real-world networks.Thus,this paper presents a new discrete version of the Improved Grey Wolf Optimizer(I-GWO)algorithm named DI-GWOCD for effectively detecting communities of different networks.In the proposed DI-GWOCD algorithm,I-GWO is first armed using a local search strategy to discover and improve nodes placed in improper communities and increase its ability to search for a better solution.Then a novel Binary Distance Vector(BDV)is introduced to calculate the wolves’distances and adapt I-GWO for solving the discrete community detection problem.The performance of the proposed DI-GWOCD was evaluated in terms of modularity,NMI,and the number of detected communities conducted by some well-known real-world network datasets.The experimental results were compared with the state-of-the-art algorithms and statistically analyzed using the Friedman and Wilcoxon tests.The comparison and the statistical analysis show that the proposed DI-GWOCD can detect the communities with higher quality than other comparative algorithms. 展开更多
关键词 Community detection Complex network optimization Metaheuristic algorithms Swarm intelligence algorithms grey wolf optimizer algorithm
在线阅读 下载PDF
Optimized Controller Gains Using Grey Wolf Algorithm for Grid Tied Solar Power Generation with Improved Dynamics and Power Quality
9
作者 Veramalla Rajagopal Danthurthi Sharath +3 位作者 Gundeboina Vishwas Jampana Bangarraju Sabha Raj Arya Challa Venkatesh 《Chinese Journal of Electrical Engineering》 CSCD 2022年第2期75-85,共11页
This study proposes a control algorithm based on synchronous reference frame theory with unit templates instead of a phase locked loop for grid-connected photovoltaic(PV)solar system,comprising solar PV panels,DC-DC c... This study proposes a control algorithm based on synchronous reference frame theory with unit templates instead of a phase locked loop for grid-connected photovoltaic(PV)solar system,comprising solar PV panels,DC-DC converter,controller for maximum power point tracking,resistance capacitance ripple filter,insulated-gate bipolar transistor based controller,interfacing inductor,linear and nonlinear loads.The dynamic performance of the grid connected solar system depends on the effect operation of the control algorithm,comprising two proportional-integral controllers.These controllers estimate the reference solar-grid currents,which in turn generate pulses for the three-leg voltage source converter.The grey wolf optimization algorithm is used to optimize the controller gains of the proportional-integral controllers,resulting in excellent performance compared to that of existing optimization algorithms.The compensation for neutral current is provided by a star-delta transformer(non-isolated),and the proposed solar PV grid system provides zero voltage regulation and eliminates harmonics,in addition to load balancing.Maximum power extraction from the solar panel is achieved using the incremental conductance algorithm for the DC-DC converter supplying solar power to the DC bus capacitor,which in turn supplies this power to the grid with improved dynamics and quality.The solar system along with the control algorithm and controller is modeled using Simulink in Matlab 2019. 展开更多
关键词 Control algorithm solar power generation DC-DC converter star-delta transformer maximum power point tracking power quality grey wolf optimization algorithm
原文传递
Bio-inspired Hybrid Feature Selection Model for Intrusion Detection
10
作者 Adel Hamdan Mohammad Tariq Alwada’n +2 位作者 Omar Almomani Sami Smadi Nidhal ElOmari 《Computers, Materials & Continua》 SCIE EI 2022年第10期133-150,共18页
Intrusion detection is a serious and complex problem.Undoubtedly due to a large number of attacks around the world,the concept of intrusion detection has become very important.This research proposes a multilayer bioin... Intrusion detection is a serious and complex problem.Undoubtedly due to a large number of attacks around the world,the concept of intrusion detection has become very important.This research proposes a multilayer bioinspired feature selection model for intrusion detection using an optimized genetic algorithm.Furthermore,the proposed multilayer model consists of two layers(layers 1 and 2).At layer 1,three algorithms are used for the feature selection.The algorithms used are Particle Swarm Optimization(PSO),Grey Wolf Optimization(GWO),and Firefly Optimization Algorithm(FFA).At the end of layer 1,a priority value will be assigned for each feature set.At layer 2 of the proposed model,the Optimized Genetic Algorithm(GA)is used to select one feature set based on the priority value.Modifications are done on standard GA to perform optimization and to fit the proposed model.The Optimized GA is used in the training phase to assign a priority value for each feature set.Also,the priority values are categorized into three categories:high,medium,and low.Besides,the Optimized GA is used in the testing phase to select a feature set based on its priority.The feature set with a high priority will be given a high priority to be selected.At the end of phase 2,an update for feature set priority may occur based on the selected features priority and the calculated F-Measures.The proposed model can learn and modify feature sets priority,which will be reflected in selecting features.For evaluation purposes,two well-known datasets are used in these experiments.The first dataset is UNSW-NB15,the other dataset is the NSL-KDD.Several evaluation criteria are used,such as precision,recall,and F-Measure.The experiments in this research suggest that the proposed model has a powerful and promising mechanism for the intrusion detection system. 展开更多
关键词 Intrusion detection Machine learning Optimized Genetic algorithm(GA) Particle Swarm optimization algorithms(PSO) grey wolf optimization algorithms(GWO) FireFly optimization algorithms(FFA) Genetic algorithm(GA)
在线阅读 下载PDF
A hybrid machine learning model to estimate self-compacting concrete compressive strength 被引量:1
11
作者 Hai-Bang LY Thuy-Anh NGUYEN +1 位作者 Binh Thai PHAM May Huu NGUYEN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2022年第8期990-1002,共13页
This study examined the feasibility of using the grey wolf optimizer(GWO)and artificial neural network(ANN)to predict the compressive strength(CS)of self-compacting concrete(SCC).The ANN-GWO model was created using 11... This study examined the feasibility of using the grey wolf optimizer(GWO)and artificial neural network(ANN)to predict the compressive strength(CS)of self-compacting concrete(SCC).The ANN-GWO model was created using 115 samples from different sources,taking into account nine key SCC factors.The validation of the proposed model was evaluated via six indices,including correlation coefficient(R),mean squared error,mean absolute error(MAE),IA,Slope,and mean absolute percentage error.In addition,the importance of the parameters affecting the CS of SCC was investigated utilizing partial dependence plots.The results proved that the proposed ANN-GWO algorithm is a reliable predictor for SCC’s CS.Following that,an examination of the parameters impacting the CS of SCC was provided. 展开更多
关键词 artificial neural network grey wolf optimize algorithm compressive strength self-compacting concrete
原文传递
Adaptive coordination control strategy of renewable energy sources,hydrogen production unit,and fuel celi for frequency regulation of a hybrid distributed power system 被引量:7
12
作者 Hossam S.Salama Gaber Magdy +1 位作者 Abualkasim Bakeer Istvan Vokony 《Protection and Control of Modern Power Systems》 2022年第1期472-489,共18页
Owing to the significant number of hybrid generation systems(HGSs)containing various energy sources,coordina-tion between these sources plays a vital role in preserving frequency stability.In this paper,an adaptive co... Owing to the significant number of hybrid generation systems(HGSs)containing various energy sources,coordina-tion between these sources plays a vital role in preserving frequency stability.In this paper,an adaptive coordination control strategy for renewable energy sources(RESs),an aqua electrolyzer(AE)for hydrogen production,and a fuel cell(FC)-based energy storage system(ESS)is proposed to enhance the frequency stability of an HGS.In the proposed system,the excess energy from RESs is used to power electrolysis via an AE for hydrogen energy storage in FCs.The proposed method is based on a proportional-integral(Pl)controller,which is optimally designed using a grey wolf optimization(GWO)algorithm to estimate the surplus energy from RESs(ie,a proportion of total power generation of RESs:Kn).The studied HGS contains various types of generation systems including a diesel generator,wind tur-bines,photovoltaic(PV)systems,AE with FCs,and ESSs(e.g.,battery and flywheel).The proposed method varies Kn with varying frequency deviation values to obtain the best benefits from RESs,while damping the frequency fluc-tuations.The proposed method is validated by considering different loading conditions and comparing with other existing studies that consider Kn as a constant value.The simulation results demonstrate that the proposed method,which changes Kn value and subsequently stores the power extracted from the RESs in hydrogen energy storage according to frequency deviation changes,performs better than those that use constant Kn.The statistical analysis for frequency deviation of HGS with the proposed method has the best values and achieves large improvements for minimum,maximum,difference between maximum and minimum,mean,and standard deviation compared to the existing method. 展开更多
关键词 Adaptive coordination control method Renewable energy sources Fuel cell grey wolf optimization(GWO)algorithm Fraction factor(Kn) Frequency control
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部