1. Introduction Over the next few years, the manufacturing industry worldwide will face intense challenges, as finite supplies of raw materials dwindle and the cheap energy from fossil fuels becomes scarcer. Many conv...1. Introduction Over the next few years, the manufacturing industry worldwide will face intense challenges, as finite supplies of raw materials dwindle and the cheap energy from fossil fuels becomes scarcer. Many conventional manufacturing processes will be outlawed on environmental grounds. For engineers and scientists, these inter- related problems also present an enormous opportunity. Robust new technologies are needed: They must be cost effective and energy efficient, and they must minimize pollution.展开更多
Silicon carbide(SiC)is widely used in fields such as new energy,military radar,and aerospace due to its outstanding physical and chemical properties.The surface micro-grooves of SiC can enhance the performance of micr...Silicon carbide(SiC)is widely used in fields such as new energy,military radar,and aerospace due to its outstanding physical and chemical properties.The surface micro-grooves of SiC can enhance the performance of micro-electromechanical systems,micro-sensors,and field-effect transistors.However,SiC,being a brittle and hard material,poses challenges for traditional machining methods like micro-groove machining and chemical etching,including subsurface damage,short tool life,and low processing efficiency.This paper investigates the processing characteristics of femtosecond laser machining of SiC micro-grooves and compares them with those of single-crystal Si.The results indicate that femtosecond laser ablation of SiC primarily leads to melting and vaporization,forming modification,melted,and ablation areas in the affected area.Femtosecond laser processing of SiC micro-grooves involves three processes:heat absorption and melting,vaporization,and chipping,with vaporization as the primary material removal mechanism.The depth and width of SiC micro-grooves are positively correlated with pulse energy(E_(p)),pulse overlap rate(PO),and number of passes(N_(pass)).The bottom roughness of the micro-grooves is positively correlated with E_(p),negatively correlated with PO,and less affected by changes in the N_(pass).These findings further elucidate the material removal and micro-groove formation mechanisms of SiC under femtosecond laser irradiation,providing theoretical insights for high-quality and high-efficiency processing of SiC micro-grooves.展开更多
A series of diatomite supported Cu/Ni bimetallic catalysts were prepared using the co-impregnation method to improve the efficiency and selectivity toward methyl 12-hydroxystearate in the hydrogenation of methyl ricin...A series of diatomite supported Cu/Ni bimetallic catalysts were prepared using the co-impregnation method to improve the efficiency and selectivity toward methyl 12-hydroxystearate in the hydrogenation of methyl ricinoleate.The catalysts were characterized using X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy and energy dispersive X-ray spectroscopy(SEM-EDS),X-ray photoelectron spectroscopy(XPS)and temperature programmed reduction(H2-TPR).All the characterization results verified the formation of highly dispersed Cu/Ni alloy on support.Moreover,by subtly regulating the Ni/Cu molar ratio as well as the reaction parameters,the hydrogenation of methyl ricinoleate to methyl 12-hydroxystearate proceeded efficiently and selectively,affording 97%yield of methyl 12-hydroxystearate and nearly equivalent conversion of methyl ricinoleate under 2 MPa H2 pressure and at 130 C in 4 h with only 1 wt%of the catalyst Ni7Cu1/diatomite(based on methyl ricinoleate).Besides,the supported Cu–Ni bimetallic catalyst is stable during recycle and reuse.After five cycles of reuse,much catalytic activity is still preserved.Therefore,this low-cost and stable bimetallic catalyst would be promising for the hydrogenation of methyl ricinoleate to methyl 12-hydroxystearate,representing an example of green catalysis for efficiently conversion of biomass to value-added chemicals and materials.展开更多
Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE dr...Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE drop when the bladecoating and/or green-solvents toward large-scale printing are used instead,which hampers the practical development of OSCs.Here,a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused endgroup.Thanks to the N-alkyl engineering,NIR-absorbing YR-SeNF series show different crystallinity,packing patterns,and miscibility with polymeric donor.The studies exhibit that the molecular packing,crystallinity,and vertical distribution of active layer morphologies are well optimized by introducing newly designed vip acceptor associated with tailored N-alkyl chains,providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YRSeNF-based OSCs.As a result,a record-high PCE approaching 19%is achieved in the blade-coating OSCs fabricated from a greensolvent o-xylene with high-boiling point.Notably,ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep>80%of the initial PCEs for even over 400 h.Our alkyl-tailored vip acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs,which paves a way for industrial development.展开更多
Process intensification is one of the most significant trends in current chemical engineering and process industries.In recent years,the desire to become more "green" in processing has always been tied to th...Process intensification is one of the most significant trends in current chemical engineering and process industries.In recent years,the desire to become more "green" in processing has always been tied to the requirement of being profitable.This review discusses the challenges of process engineering and summarizes the key role of fundamentals for green process intensification.展开更多
The green process to recover magnesium chlor-ide from the residue solution of a potassium chloride pro-duction plant,which comes from the leach solution of a potash mine in Laos,is designed and optimized.The res-idue ...The green process to recover magnesium chlor-ide from the residue solution of a potassium chloride pro-duction plant,which comes from the leach solution of a potash mine in Laos,is designed and optimized.The res-idue solution contains magnesium chloride above 25 wt-%,potassium chloride and sodium chloride together below 5 wt-%and a few other ions such as Br-,SO_(2)-4and Ca2+.The recovery process contains two steps:the previous impurity removal operation and the two-stage evapora-tion-cooling crystallization procedure to produce magnes-ium chloride.The crystallized impurity carnallite obtained from the first step is recycled to the potassium chloride plant to recover the potassium salt.The developed process is a zero discharge one and thus fulfills the requirements for green chemical industrial production.The produced magnesium chloride is up to industrial criteria.展开更多
In this paper, the concept of “green processing” will be applied, while explaining the role of sustainable development strategy with respect to the environmental issue. Two parameters are considered in the study by ...In this paper, the concept of “green processing” will be applied, while explaining the role of sustainable development strategy with respect to the environmental issue. Two parameters are considered in the study by utilizing carbon dioxide and reject brine from desalination plants as raw materials to produce valuable chemical products and partially desalinated water.展开更多
The aim of this research was to explore the effect of fixation,rolling,and drying processing technology on the retention rate of green tea catechins components and tea polyphenol.Different fixation processes(rotary dr...The aim of this research was to explore the effect of fixation,rolling,and drying processing technology on the retention rate of green tea catechins components and tea polyphenol.Different fixation processes(rotary drumfiring,microwave,steam-blasting),rolling process(weight of rolling,gently press rolling and traditional rolling),drying process(stove drying,roasting dehydration,baked fried drying) were adopted.The effect of different tea processing technology on the retention rate of catechins component and tea polyphenol was analyzed.It showed that the microwave fixation process,gently press rolling process,baked fried dry process were beneficial to keep high levels of EGCG,C,EGC,EC,ECG.展开更多
The index system, code system, and weights of indexes are established to assess the effects of green construction. The index system consists of index level, factor level and sub-factor level. The analytic hierarchy pr...The index system, code system, and weights of indexes are established to assess the effects of green construction. The index system consists of index level, factor level and sub-factor level. The analytic hierarchy process is used to determine the weights of indexes, and the consistency test indicate that the weight assignment is reasonable. Using fuzzy synthetic judgment method, the assessment model is built, which includes factor set, weight set and conclusion set. An example is given to demonstrate the assessment procedures.展开更多
Graphite,encompassing both natural graphite and synthetic graphite,and graphene,have been extensively utilized and investigated as anode materials and additives in lithium-ion batteries(LIBs).In the pursuit of carbon ...Graphite,encompassing both natural graphite and synthetic graphite,and graphene,have been extensively utilized and investigated as anode materials and additives in lithium-ion batteries(LIBs).In the pursuit of carbon neutrality,LIBs are expected to play a pivotal role in reducing CO_(2)emissions by decreasing reliance on fossil fuels and enabling the integration of renewable energy sources.Owing to their technological maturity and exceptional electrochemical performance,the global production of graphite and graphene for LIBs is projected to continue expanding.Over the past decades,numerous researchers have concentrated on reducing the material and energy input whilst optimising the electrochemical performance of graphite and graphene,through novel synthesis methods and various modifications at the laboratory scale.This review provides a comprehensive examination of the manufacturing methods,environmental impact,research progress,and challenges associated with graphite and graphene in LIBs from an industrial perspective,with a particular focus on the carbon footprint of production processes.Additionally,it considers emerging challenges and future development directions of graphite and graphene,offering significant insights for ongoing and future research in the field of green LIBs.展开更多
文摘1. Introduction Over the next few years, the manufacturing industry worldwide will face intense challenges, as finite supplies of raw materials dwindle and the cheap energy from fossil fuels becomes scarcer. Many conventional manufacturing processes will be outlawed on environmental grounds. For engineers and scientists, these inter- related problems also present an enormous opportunity. Robust new technologies are needed: They must be cost effective and energy efficient, and they must minimize pollution.
基金Supported by National Natural Science Foundation of China(Grant No.52122510)the School-enterprise Cooperation Project Funded by Dongguan Strong Laser Advanced Equipment Co.,Ltd.(Grant No.21HK0214)。
文摘Silicon carbide(SiC)is widely used in fields such as new energy,military radar,and aerospace due to its outstanding physical and chemical properties.The surface micro-grooves of SiC can enhance the performance of micro-electromechanical systems,micro-sensors,and field-effect transistors.However,SiC,being a brittle and hard material,poses challenges for traditional machining methods like micro-groove machining and chemical etching,including subsurface damage,short tool life,and low processing efficiency.This paper investigates the processing characteristics of femtosecond laser machining of SiC micro-grooves and compares them with those of single-crystal Si.The results indicate that femtosecond laser ablation of SiC primarily leads to melting and vaporization,forming modification,melted,and ablation areas in the affected area.Femtosecond laser processing of SiC micro-grooves involves three processes:heat absorption and melting,vaporization,and chipping,with vaporization as the primary material removal mechanism.The depth and width of SiC micro-grooves are positively correlated with pulse energy(E_(p)),pulse overlap rate(PO),and number of passes(N_(pass)).The bottom roughness of the micro-grooves is positively correlated with E_(p),negatively correlated with PO,and less affected by changes in the N_(pass).These findings further elucidate the material removal and micro-groove formation mechanisms of SiC under femtosecond laser irradiation,providing theoretical insights for high-quality and high-efficiency processing of SiC micro-grooves.
基金supported by the National Program on Key Research Project(2016YFA0602900)Nankai University Engineering Research Center for Castor and also supported by"the Fundamental Research Funds for the Central Universities",Nankai University(000082).
文摘A series of diatomite supported Cu/Ni bimetallic catalysts were prepared using the co-impregnation method to improve the efficiency and selectivity toward methyl 12-hydroxystearate in the hydrogenation of methyl ricinoleate.The catalysts were characterized using X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy and energy dispersive X-ray spectroscopy(SEM-EDS),X-ray photoelectron spectroscopy(XPS)and temperature programmed reduction(H2-TPR).All the characterization results verified the formation of highly dispersed Cu/Ni alloy on support.Moreover,by subtly regulating the Ni/Cu molar ratio as well as the reaction parameters,the hydrogenation of methyl ricinoleate to methyl 12-hydroxystearate proceeded efficiently and selectively,affording 97%yield of methyl 12-hydroxystearate and nearly equivalent conversion of methyl ricinoleate under 2 MPa H2 pressure and at 130 C in 4 h with only 1 wt%of the catalyst Ni7Cu1/diatomite(based on methyl ricinoleate).Besides,the supported Cu–Ni bimetallic catalyst is stable during recycle and reuse.After five cycles of reuse,much catalytic activity is still preserved.Therefore,this low-cost and stable bimetallic catalyst would be promising for the hydrogenation of methyl ricinoleate to methyl 12-hydroxystearate,representing an example of green catalysis for efficiently conversion of biomass to value-added chemicals and materials.
基金the support from the NSFC (22209131, 22005121, 21875182, and 52173023)National Key Research and Development Program of China (2022YFE0132400)+4 种基金Key Scientific and Technological Innovation Team Project of Shaanxi Province (2020TD-002)111 project 2.0 (BP0618008)Open Fund of Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications (Changzhou University, GDRGCS2022002)Open Fund of Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education (Jiangxi Normal University, KFSEMC-202201)acquired at beamlines 7.3.3 and 11.0.1.2 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231
文摘Power-conversion-efficiencies(PCEs)of organic solar cells(OSCs)in laboratory,normally processed by spin-coating technology with toxic halogenated solvents,have reached over 19%.However,there is usually a marked PCE drop when the bladecoating and/or green-solvents toward large-scale printing are used instead,which hampers the practical development of OSCs.Here,a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused endgroup.Thanks to the N-alkyl engineering,NIR-absorbing YR-SeNF series show different crystallinity,packing patterns,and miscibility with polymeric donor.The studies exhibit that the molecular packing,crystallinity,and vertical distribution of active layer morphologies are well optimized by introducing newly designed vip acceptor associated with tailored N-alkyl chains,providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YRSeNF-based OSCs.As a result,a record-high PCE approaching 19%is achieved in the blade-coating OSCs fabricated from a greensolvent o-xylene with high-boiling point.Notably,ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep>80%of the initial PCEs for even over 400 h.Our alkyl-tailored vip acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs,which paves a way for industrial development.
基金supported by the State Major Basic Research Development Program of China (2007CB613507)National Natural Science Key Fund (20490200)Innovative Research Group Science Fund (20221603)
文摘Process intensification is one of the most significant trends in current chemical engineering and process industries.In recent years,the desire to become more "green" in processing has always been tied to the requirement of being profitable.This review discusses the challenges of process engineering and summarizes the key role of fundamentals for green process intensification.
文摘The green process to recover magnesium chlor-ide from the residue solution of a potassium chloride pro-duction plant,which comes from the leach solution of a potash mine in Laos,is designed and optimized.The res-idue solution contains magnesium chloride above 25 wt-%,potassium chloride and sodium chloride together below 5 wt-%and a few other ions such as Br-,SO_(2)-4and Ca2+.The recovery process contains two steps:the previous impurity removal operation and the two-stage evapora-tion-cooling crystallization procedure to produce magnes-ium chloride.The crystallized impurity carnallite obtained from the first step is recycled to the potassium chloride plant to recover the potassium salt.The developed process is a zero discharge one and thus fulfills the requirements for green chemical industrial production.The produced magnesium chloride is up to industrial criteria.
文摘In this paper, the concept of “green processing” will be applied, while explaining the role of sustainable development strategy with respect to the environmental issue. Two parameters are considered in the study by utilizing carbon dioxide and reject brine from desalination plants as raw materials to produce valuable chemical products and partially desalinated water.
文摘The aim of this research was to explore the effect of fixation,rolling,and drying processing technology on the retention rate of green tea catechins components and tea polyphenol.Different fixation processes(rotary drumfiring,microwave,steam-blasting),rolling process(weight of rolling,gently press rolling and traditional rolling),drying process(stove drying,roasting dehydration,baked fried drying) were adopted.The effect of different tea processing technology on the retention rate of catechins component and tea polyphenol was analyzed.It showed that the microwave fixation process,gently press rolling process,baked fried dry process were beneficial to keep high levels of EGCG,C,EGC,EC,ECG.
基金The Doctoral Program of Higher Educa-tion Institution of China (No.20050487017)
文摘The index system, code system, and weights of indexes are established to assess the effects of green construction. The index system consists of index level, factor level and sub-factor level. The analytic hierarchy process is used to determine the weights of indexes, and the consistency test indicate that the weight assignment is reasonable. Using fuzzy synthetic judgment method, the assessment model is built, which includes factor set, weight set and conclusion set. An example is given to demonstrate the assessment procedures.
基金supported by European Union's Horizon Europe,UK Research and Innovation(UKRI).
文摘Graphite,encompassing both natural graphite and synthetic graphite,and graphene,have been extensively utilized and investigated as anode materials and additives in lithium-ion batteries(LIBs).In the pursuit of carbon neutrality,LIBs are expected to play a pivotal role in reducing CO_(2)emissions by decreasing reliance on fossil fuels and enabling the integration of renewable energy sources.Owing to their technological maturity and exceptional electrochemical performance,the global production of graphite and graphene for LIBs is projected to continue expanding.Over the past decades,numerous researchers have concentrated on reducing the material and energy input whilst optimising the electrochemical performance of graphite and graphene,through novel synthesis methods and various modifications at the laboratory scale.This review provides a comprehensive examination of the manufacturing methods,environmental impact,research progress,and challenges associated with graphite and graphene in LIBs from an industrial perspective,with a particular focus on the carbon footprint of production processes.Additionally,it considers emerging challenges and future development directions of graphite and graphene,offering significant insights for ongoing and future research in the field of green LIBs.