期刊文献+
共找到114篇文章
< 1 2 6 >
每页显示 20 50 100
基于GWO-LMS-RSSD的旋转机械耦合故障分离及特征强化方法
1
作者 许文 施卫华 +3 位作者 李红钢 华如南 刘厚林 董亮 《机电工程》 北大核心 2025年第4期677-685,共9页
针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号... 针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号进行了滤波处理,使故障特征得到了初步强化;然后,根据耦合故障的不同共振属性,利用RSSD算法将故障耦合分解为高共振分量和低共振分量,完成了耦合故障分离;特别地,针对LMS算法中参数依赖人工经验、自适应差等问题,研究了基于灰狼优化算法(GWO)的参数自适应优化方法,设计了以信噪比和均方误差构成的优化目标;最后,对稀疏分解得到的信号进行了包络解调,完成了耦合故障分离及特征强化,同时,利用模拟信号和实验信号对该方法进行了验证分析。研究结果表明:GWO-LMS-RSSD算法能用于有效降低噪声干扰,分离旋转机械耦合故障及强化故障特征。该研究成果可为强噪声干扰下耦合故障的特征分离及强化提供一种新的思路。 展开更多
关键词 耦合故障诊断 旋转机械 共振稀疏分解 自适应滤波最小均方算法 灰狼优化算法 信噪比 均方误差
在线阅读 下载PDF
Optimal Operation of Distributed Generations Considering Demand Response in a Microgrid Using GWO Algorithm 被引量:2
2
作者 Hassan Shokouhandeh Mehrdad Ahmadi Kamarposhti +2 位作者 William Holderbaum Ilhami Colak Phatiphat Thounthong 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期809-822,共14页
The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affec... The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affected.The control and operation of many small-distributed generation units with different performance characteristics create another challenge for the safe and efficient operation of the microgrid.In this paper,the optimum operation of distributed generation resources and heat and power storage in a microgrid,was performed based on real-time pricing through the proposed gray wolf optimization(GWO)algorithm to reduce the energy supply cost with the microgrid.Distributed generation resources such as solar panels,diesel generators with battery storage,and boiler thermal resources with thermal storage were used in the studied microgrid.Also,a combined heat and power(CHP)unit was used to produce thermal and electrical energy simultaneously.In the simulations,in addition to the gray wolf algorithm,some optimization algorithms have also been used.Then the results of 20 runs for each algorithm confirmed the high accuracy of the proposed GWO algorithm.The results of the simulations indicated that the CHP energy resources must be managed to have a minimum cost of energy supply in the microgrid,considering the demand response program. 展开更多
关键词 MICROGRID demand response program cost reduction gray wolf optimization algorithm
在线阅读 下载PDF
GWO优化CNN-BiLSTM-Attenion的轴承剩余寿命预测方法 被引量:6
3
作者 李敬一 苏翔 《振动与冲击》 北大核心 2025年第2期321-332,共12页
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来... 滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。 展开更多
关键词 灰狼优化(gwo)算法 卷积神经网络(CNN) 双向长短期记忆(BiLSTM)网络 自注意力机制 剩余使用寿命预测
在线阅读 下载PDF
基于改进PSO-GWO算法的渠系优化配水模型研究 被引量:1
4
作者 姚成宝 岳春芳 +1 位作者 张胜江 郑秋丽 《人民黄河》 北大核心 2025年第1期128-133,共6页
为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最... 为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最优轮灌编组、配水流量和灌水时间等重要参数,得出渠系渗漏损失量和算法迭代次数,并与粒子群算法、灰狼算法的求解结果进行对比。改进模型使灌水时间缩短了0.62 d,支斗两级渠系水利用系数提高了0.168,改进PSO-GWO算法迭代次数为3次、渠系渗漏总量为16.69万m^(3),优于传统算法的配水结果。实例应用情况表明,改进算法具有更强的寻优能力和收敛性,并且模型在满足高效配水的同时,减少了闸门启闭次数,实现了集中调控,配水模式便捷,应用价值较高。 展开更多
关键词 渠系配水 渗漏损失 轮灌编组 改进PSO-gwo算法 粒子群算法 灰狼算法
在线阅读 下载PDF
VGWO: Variant Grey Wolf Optimizer with High Accuracy and Low Time Complexity
5
作者 Junqiang Jiang Zhifang Sun +3 位作者 Xiong Jiang Shengjie Jin Yinli Jiang Bo Fan 《Computers, Materials & Continua》 SCIE EI 2023年第11期1617-1644,共28页
The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple pr... The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple principle and few parameters setting,GWO bears drawbacks such as low solution accuracy and slow convergence speed.A few recent advanced GWOs are proposed to try to overcome these disadvantages.However,they are either difficult to apply to large-scale problems due to high time complexity or easily lead to early convergence.To solve the abovementioned issues,a high-accuracy variable grey wolf optimizer(VGWO)with low time complexity is proposed in this study.VGWO first uses the symmetrical wolf strategy to generate an initial population of individuals to lay the foundation for the global seek of the algorithm,and then inspired by the simulated annealing algorithm and the differential evolution algorithm,a mutation operation for generating a new mutant individual is performed on three wolves which are randomly selected in the current wolf individuals while after each iteration.A vectorized Manhattan distance calculation method is specifically designed to evaluate the probability of selecting the mutant individual based on its status in the current wolf population for the purpose of dynamically balancing global search and fast convergence capability of VGWO.A series of experiments are conducted on 19 benchmark functions from CEC2014 and CEC2020 and three real-world engineering cases.For 19 benchmark functions,VGWO’s optimization results place first in 80%of comparisons to the state-of-art GWOs and the CEC2020 competition winner.A further evaluation based on the Friedman test,VGWO also outperforms all other algorithms statistically in terms of robustness with a better average ranking value. 展开更多
关键词 Intelligence optimization algorithm grey wolf optimizer(gwo) manhattan distance symmetric coordinates
在线阅读 下载PDF
基于GWO-BP模型与MOMPA算法的插秧机车架轻量化设计 被引量:1
6
作者 陈岁繁 侯万森 +3 位作者 张浩南 李其朋 夏琪玮 陈问池 《机电工程》 北大核心 2025年第5期933-944,共12页
为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其... 为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其性能进行了仿真;然后,采用灵敏度分析确定了可作为优化设计变量的8个主要结构参数,并利用实验设计的方法计算出设计变量与目标参数之间响应关系的数据,从而建立了GWO-BP近似模型,联合近似模型与MOMPA优化算法,以车架质量、最大变形最小为优化目标,求出了轻量化车架的最优结构参数组合;最后,对车架优化结果进行了验证,同时,分析了车架模态性能,并建立了车架样机,通过试验验证了车架轻量化结果。研究结果表明:车架质量、车架最大变形和最大等效应力的拟合精度分别为0.998 8、0.987 8、0.986 7,建立的近似模型具有较高精度;优化后车架质量比原车架降低了9.26%;优化结果与仿真结果误差在2%以内,且优化后车架固有频率可以有效避开外界激励,通过对比优化前后车架质量及性能,确定了优化结果的准确性与有效性;根据优化结果制造了轻量化车架的样机,其整体质量较原车架减轻了10.3%,达到了良好的轻量化效果,为农机车架轻量化研究提供了一定的借鉴。 展开更多
关键词 水稻插秧机 轻量化 灰狼优化反向传播神经网络 多目标海洋捕食者优化算法 车架模态分析
在线阅读 下载PDF
Optimizing Grey Wolf Optimization: A Novel Agents’ Positions Updating Technique for Enhanced Efficiency and Performance
7
作者 Mahmoud Khatab Mohamed El-Gamel +2 位作者 Ahmed I. Saleh Asmaa H. Rabie Atallah El-Shenawy 《Open Journal of Optimization》 2024年第1期21-30,共10页
Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of ... Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms. 展开更多
关键词 Grey wolf optimization (gwo) Metaheuristic algorithm optimization Problems Agents’ Positions Leader Wolves Optimal Fitness Values optimization Challenges
在线阅读 下载PDF
PCA+GWO集成特征选择和模型堆叠的客户流失预测
8
作者 刘梅 郑立君 +1 位作者 段永良 段红秀 《计算机工程与应用》 北大核心 2025年第15期329-342,共14页
客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法... 客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法,并用模型堆叠构建了客户流失预测模型。提出了利用Pearson系数和随机森林(RF)的特征重要性来确定需要降维特征组的方法。改进了灰狼优化算法(GWO)中的灰狼位置更新机制和收敛条件,并将其应用于选择最佳特征子集的过程中。选取了10种不同的机器学习模型进行训练,挑选出F1-score表现最优的模型作为基模型,进行元模型训练。实验结果表明,使用某酒店客户信息数据集时,改进后的GWO算法收敛速度显著提升,且预测模型的F1-score达到了97.9%,该模型具有较强的泛化能力。 展开更多
关键词 特征选择 随机森林(RF) 主成分分析(PCA) 灰狼优化(gwo)算法 模型堆叠
在线阅读 下载PDF
基于GWO-LSSVM的直流故障电弧诊断方法
9
作者 刘树鑫 刘丙泽 +3 位作者 邢朝建 明欣 周厚霖 吕先锋 《电器与能效管理技术》 2025年第1期14-22,共9页
针对直流故障电弧在不同工况下识别准确率不高的问题,提出基于灰狼优化算法的最小二乘支持向量机(GWO-LSSVM)对多负载工况下的直流电弧进行故障诊断。首先,应用改进的自适应噪声完备集合经验模态分解(ICEEMDAN),对参考高铁站混合负载得... 针对直流故障电弧在不同工况下识别准确率不高的问题,提出基于灰狼优化算法的最小二乘支持向量机(GWO-LSSVM)对多负载工况下的直流电弧进行故障诊断。首先,应用改进的自适应噪声完备集合经验模态分解(ICEEMDAN),对参考高铁站混合负载得到的不同工况下直流电弧电流信号进行本征模态函数(IMF)分解。其次,进行筛选得到相关分量,结合多尺度排列熵(MPE)构造特征向量。最后,针对诊断模型的收敛速度较慢及模型倾向于陷入局部最优解的问题,应用GWO算法优化的LSSVM模型进行故障状态的识别。实验结果表明,准确率达到98.33%。通过与其他算法对比,证实所提方法的高效性。 展开更多
关键词 直流故障电弧 多尺度排列熵 灰狼优化算法 故障诊断
在线阅读 下载PDF
基于GWO-BP的火电厂NOx排放量软测量模型
10
作者 梁宇倩 郭志坚 张红梅 《自动化与仪表》 2025年第6期70-74,共5页
火电厂在稳定运行的同时,不可避免地会排放大量污染气体,尤其是NOx。针对传统测量方法的不足,该文提出一种基于灰狼优化反向传播神经网络(grey wolf optimized-back propagation,GWO-BP)的NOx排放量软测量模型。首先使用典型相关性分析(... 火电厂在稳定运行的同时,不可避免地会排放大量污染气体,尤其是NOx。针对传统测量方法的不足,该文提出一种基于灰狼优化反向传播神经网络(grey wolf optimized-back propagation,GWO-BP)的NOx排放量软测量模型。首先使用典型相关性分析(canonical correlation analysis,CCA)将任意两个相关度较高的变量归为一组,并去掉其中一个,从而选择了对NOx排放量影响最大的4个变量作为软测量模型的输入;然后,建立了反向传播(back propagation,BP)神经网络模型以对输入变量和NOx排放量做映射;最后,采用灰狼优化(grey wolf optimizer,GWO)算法优化了所提软测量模型的权重和偏置值,提升了模型的精度。实验结果表明,所提软测量模型可以准确测量NOx的排放量,在传感器故障或伴有噪声的时候很好地替代了传感器的角色,为优化算法及深度学习方法在工业现场的应用提供了参考。 展开更多
关键词 NOx排放量软测量 典型相关性分析 BP神经网络 灰狼优化算法
在线阅读 下载PDF
基于GWO算法光伏阵列多峰值的MPPT 被引量:19
11
作者 张巧杰 王凯丽 房雪晴 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第6期1526-1532,共7页
针对因遮挡处于部分阴影条件下的光伏阵列,其功率特性曲线由单峰曲线变为叠峰曲线,使最大功率点跟踪(MPPT)算法失效,而其他智能算法(如粒子群优化(PSO)算法)存在参数较多、收敛速度慢、振荡幅度大等问题,将收敛速度快、求解精度高的灰... 针对因遮挡处于部分阴影条件下的光伏阵列,其功率特性曲线由单峰曲线变为叠峰曲线,使最大功率点跟踪(MPPT)算法失效,而其他智能算法(如粒子群优化(PSO)算法)存在参数较多、收敛速度慢、振荡幅度大等问题,将收敛速度快、求解精度高的灰狼优化(GWO)算法应用于光伏阵列多峰值MPPT算法中.先建立处于局部遮挡情形下光伏阵列的数学模型,再解析基于GWO算法的MPPT算法原理.仿真实验结果表明:GWO算法可快速跟踪到最大功率点;GWO算法比PSO算法的跟踪速度提高1倍,跟踪效率提高0.1%. 展开更多
关键词 灰狼优化算法 最大功率点跟踪 部分阴影 光伏阵列
在线阅读 下载PDF
改进GWO优化SVM的服务器性能预测 被引量:8
12
作者 李建民 陈慧 +1 位作者 杨冬芹 林振荣 《计算机工程与设计》 北大核心 2019年第11期3099-3105,3163,共8页
为更加精确地对服务器性能进行评估与预测,提出一种基于差分进化(DE)与灰狼寻优(GWO)相结合的SVM模型(DE-GWO-SVM)。利用灰狼寻优算法(GWO)寻求SVM的最优参数组合惩罚因子C和核函数参数γ,提升SVM算法的预测性能,将DE算法用于生成灰狼... 为更加精确地对服务器性能进行评估与预测,提出一种基于差分进化(DE)与灰狼寻优(GWO)相结合的SVM模型(DE-GWO-SVM)。利用灰狼寻优算法(GWO)寻求SVM的最优参数组合惩罚因子C和核函数参数γ,提升SVM算法的预测性能,将DE算法用于生成灰狼寻优算法初始种群的最优值,克服GWO的初始种群随机生成的局限性,使GWO具有更加良好的寻优能力,获取SVM算法的参数组合C和γ的最优解。实验结果表明,相比于传统的SVM、ABCSVM、GWOSVM模型,DEGWOSVM预测模型具有较高的预测精度、良好的稳定性和泛化能力。 展开更多
关键词 支持向量机 灰狼寻优算法 差分进化算法 服务器性能 预测模型
在线阅读 下载PDF
基于CEEMD和GWO-SVR的铣削振动信号前瞻预测 被引量:6
13
作者 吴石 张轩瑞 刘献礼 《振动与冲击》 EI CSCD 北大核心 2022年第11期199-209,234,共12页
汽车覆盖件模具多采用镶块式模件拼接后整体加工,拼接区加工时易引发载荷突变产生冲击振动,影响拼接区的整体加工质量,为了提高拼接区的加工精度,对铣削过程的时域振动信号进行前瞻预测。首先基于互补式集合经验模态分解方法将铣削振动... 汽车覆盖件模具多采用镶块式模件拼接后整体加工,拼接区加工时易引发载荷突变产生冲击振动,影响拼接区的整体加工质量,为了提高拼接区的加工精度,对铣削过程的时域振动信号进行前瞻预测。首先基于互补式集合经验模态分解方法将铣削振动信号进行6层模态分解,得到各层本征模态函数及趋势序列;然后分别构建不同工况下的支持向量回归预测模型,采用灰狼优化算法对支持向量回归中的参数进行寻优分析;最后对时域振动信号进行重构和前瞻预测。试验结果表明,在淬硬钢拼接区铣削过程中,结合CEEMD和GWO-SVR的铣削振动信号前瞻预测方法相较于其它传统方法具有更良好的预测效果,在预测时间为0.12 s时总体预测准确率达94%以上。 展开更多
关键词 铣削振动 前瞻预测 互补式集成经验模态 支持向量回归 灰狼优化算法
在线阅读 下载PDF
基于RS-GWO-GRNN的充填管道失效风险研究 被引量:9
14
作者 骆正山 王文辉 张新生 《有色金属工程》 CAS 北大核心 2019年第6期76-83,共8页
为克服充填管道失效风险评判指标间的复杂性,传统方法预测精度低及适用性差等缺陷,提出基于粗糙集(RS)和灰狼优化(GWO)算法融合广义回归神经网络(GRNN)的充填管道失效风险评价模型。选取10项风险评价指标,通过属性约简提取影响充填管道... 为克服充填管道失效风险评判指标间的复杂性,传统方法预测精度低及适用性差等缺陷,提出基于粗糙集(RS)和灰狼优化(GWO)算法融合广义回归神经网络(GRNN)的充填管道失效风险评价模型。选取10项风险评价指标,通过属性约简提取影响充填管道失效的主要风险因素,运用GWO优化GRNN的参数,构建预测模型,以国内某具体矿山充填系统为例进行实证研究,结果表明:与其它预测模型相比,RS-GWO-GRNN模型的预测精度更高,泛化能力更强,为充填管道失效风险研究提供了新思路,具有较好的借鉴意义。 展开更多
关键词 粗糙集(RS)理论 灰狼优化(gwo)算法 广义回归神经网络(GRNN) 充填管道 失效风险
在线阅读 下载PDF
基于CGWO算法的边坡最小安全系数全局寻优方法 被引量:4
15
作者 王述红 魏崴 +1 位作者 韩文帅 陈浩 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第7期1033-1042,共10页
针对基本灰狼算法存在初始种群不均匀、早熟收敛等问题,基于混沌理论从三个方面对灰狼优化(grey wolf optimization,GWO)算法进行改进,提出了混沌灰狼优化(chaotic grey wolf optimization,CGWO)算法用于确定边坡的最小安全系数.首先,... 针对基本灰狼算法存在初始种群不均匀、早熟收敛等问题,基于混沌理论从三个方面对灰狼优化(grey wolf optimization,GWO)算法进行改进,提出了混沌灰狼优化(chaotic grey wolf optimization,CGWO)算法用于确定边坡的最小安全系数.首先,采用改进Tent混沌映射提高初始种群多样性;其次,通过混沌扰动策略避免算法陷入局部最优;最后,引入参数混沌非线性调节机制均衡算法的全局开发和局部勘探算力.13个基准测试函数的仿真结果表明,改进后的算法与基本GWO,WOA,PSO以及SCA相比具有更强的综合寻优性能.选取ACADS边坡考核题进行计算分析,CGWO算法表现出较高的计算精度和收敛速度,能够有效地搜索到复杂分层边坡的最小安全系数.对比有限元强度折减法,该方法具有操作简易、搜索区域易于设置等优点. 展开更多
关键词 灰狼优化算法 混沌映射 边坡稳定性分析 最危险滑动面 最小安全系数
在线阅读 下载PDF
基于CP结合DE-GWO-SVR的海上风电基础结构损伤识别 被引量:5
16
作者 杜尊峰 邵玄玄 王晓梅 《振动与冲击》 EI CSCD 北大核心 2020年第22期110-118,共9页
结构仅输出的振动信号往往是各种源信号通过复杂规律形成的混合信号,对结构损伤特征提取与数据挖掘造成了很大困难。对此,提出了一种基于盲源分离(BSS)理论的复杂度追踪(CP)算法结合差分进化(DE)改进灰狼(GWO)算法优化的支持向量机(SVR... 结构仅输出的振动信号往往是各种源信号通过复杂规律形成的混合信号,对结构损伤特征提取与数据挖掘造成了很大困难。对此,提出了一种基于盲源分离(BSS)理论的复杂度追踪(CP)算法结合差分进化(DE)改进灰狼(GWO)算法优化的支持向量机(SVR)用于解决复杂结构的模态与损伤识别;CP算法基于信号预测性函数通过使分离信号的时间预测性度量最大化找到其线性混合矩阵,使分离分量具有最小复杂度并据此估计源信号。利用CP算法对结构响应信号进性分离得到信号分布向量(SDV)与分离源信号,通过定义差值曲率分布向量可以对结构损伤位置进行准确定位;对于损伤程度的识别,提出了一种DE改进的GWO对SVR进行优化的算法,即在GWO算法迭代过程中利用差分进化思想引入动态缩放因子以及交叉概率因子提高搜索和收敛速度,扩大种群所搜范围;利用不同工况下CP算法提取的差值曲率分布向量对结构损伤程度进行识别。通过对海上风电基础结构数值模型的分析,结果表明:CP算法对于高阶模态参数识别较fastICA表现出较强的适应性与优越性;同时,DE-GWO能够提高收敛速度,通过SVR算法对损伤的识别结果相比于BP神经网络更加准确。 展开更多
关键词 盲源分离(BSS) 复杂度追踪(CP)算法 差分进化(DE) 灰狼优化(gwo)算法 海上风电基础结构 损伤识别 支持向量机(SVR)
在线阅读 下载PDF
基于LASSO-GWO-KELM的工业碳排放预测方法研究 被引量:20
17
作者 张新生 魏志臻 +1 位作者 陈章政 韩轶伟 《环境工程》 CAS CSCD 北大核心 2023年第10期141-149,共9页
针对工业碳排放系统的总量预测问题,建立基于套索回归(LASSO)、灰狼优化算法(GWO)和核极限学习机(KELM)相结合的模型提高碳排放量预测精度。首先根据IPCC公式法与电热分摊法核算2000—2020年工业直接与间接碳排放量,运用STIRPAT模型选... 针对工业碳排放系统的总量预测问题,建立基于套索回归(LASSO)、灰狼优化算法(GWO)和核极限学习机(KELM)相结合的模型提高碳排放量预测精度。首先根据IPCC公式法与电热分摊法核算2000—2020年工业直接与间接碳排放量,运用STIRPAT模型选取国内生产总值、能源结构、固定资产投资等指标;然后通过灰色关联分析、LASSO回归模型筛选出7个显著影响因素;再接着对工业碳排放系统的参数数据进行预处理并输入至KELM模型,使用GWO算法优化KELM正则化系数(C)和核函数参数(γ);最后将预测结果集成汇总,并对比分析LASSO-GWO-KELM、LASSO-SSA-KELM、LASSO-SFO-KELM、LASSO-KELM和LASSO-ELM预测结果。结果显示:LASSO-GWO-KELM模型预测值与实际值拟合,其均方误差、平均绝对误差、均方根误差、平均绝对百分比误差分别为0.02%、1.09%、1.33%和1.17%,均优于其他模型,证明该模型能够更为准确地预测工业碳排放量,为我国尽早实现“双碳”目标提供参考。 展开更多
关键词 工业 套索回归 核极限学习机 灰狼优化算法 碳排放预测
原文传递
基于改进GWO-LightGBM的磨煤机故障预警方法研究 被引量:4
18
作者 陈思勤 周浩豪 茅大钧 《自动化仪表》 CAS 2024年第2期106-110,115,共6页
为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改... 为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改进GWO算法优化模型超参数,以提高算法效率和性能。试验结果表明,改进GWO-LightGBM算法相比支持向量机(SVM)等传统算法具有更高的精度和更优的泛化能力。通过实际故障案例证明,该方法能够提前2 h对磨煤机进行早期故障预警。该方法对燃煤电厂磨煤机安全运维具有指导意义。 展开更多
关键词 燃煤电厂 磨煤机 故障预警 改进灰狼优化算法 轻量级梯度提升机 滑动窗口法 Halton
在线阅读 下载PDF
局部阴影下基于GWO-P&O混合算法的光伏最大功率点跟踪 被引量:1
19
作者 赵峰 肖成锐 +1 位作者 陈小强 王英 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第1期64-71,共8页
针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提... 针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。 展开更多
关键词 灰狼优化算法 扰动观察法 局部遮阴 混合优化最大功率点跟踪算法 全局最大功率点
在线阅读 下载PDF
基于GWO-LSTM的网约车需求短时预测模型 被引量:4
20
作者 许伦辉 郭雅婷 《自动化与仪表》 2020年第5期86-90,108,共6页
为平衡网约车供需,支持车辆调度,该文研究了灰狼优化算法(GWO)优化参数的长短期记忆神经网络(LSTM)在网约车出行需求短时预测中的应用。研究了网约车出行需求时空特性,进行了影响因素的相关性分析;提出GWO改进LSTM的网约车需求短时预测... 为平衡网约车供需,支持车辆调度,该文研究了灰狼优化算法(GWO)优化参数的长短期记忆神经网络(LSTM)在网约车出行需求短时预测中的应用。研究了网约车出行需求时空特性,进行了影响因素的相关性分析;提出GWO改进LSTM的网约车需求短时预测模型;以实际数据验证了模型有效性并与其他模型进行对比。结果表明,相较于传统的LSTM网络及BP神经网络,该优化模型平均绝对误差分别提升了36.89%和52.12%,均方根误差分别提升了34.45%和48.16%;优化效果显著。 展开更多
关键词 预测模型 网络预约出租汽车服务 短时交通 长短期记忆神经网络 灰狼优化算法 城市交通
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部