期刊文献+
共找到2,050篇文章
< 1 2 103 >
每页显示 20 50 100
The Electromagnetic Nature of Gravitation and Matter-Antimatter Antigravity. Surmise on Quantum Vacuum Gravitation and Cosmology
1
作者 Constantin Meis 《Journal of Modern Physics》 2022年第6期949-968,共20页
We show that the electromagnetic quantum vacuum derives directly from Maxwell’s theory and plays a primary role in quantum electrodynamics, particle physics, gravitation and cosmology. It corresponds to the electroma... We show that the electromagnetic quantum vacuum derives directly from Maxwell’s theory and plays a primary role in quantum electrodynamics, particle physics, gravitation and cosmology. It corresponds to the electromagnetic field ground state at zero frequency, a zero-energy cosmic field permeating all of space and it is composed of real states, called kenons (κενο = vacuum). Photons are local oscillations of kenons guided by a non-local vector potential wave function with quantized amplitude. They propagate at the speed imposed by the vacuum electric permittivity ε<sub>0</sub> and magnetic permeability μ<sub>0</sub>, which are intrinsic properties of the electromagnetic quantum vacuum. The electron-positron elementary charge derives naturally from the electromagnetic quantum vacuum and is related to the photon vector potential. We establish the masse-charge equivalence relation showing that the masses of all particles (leptons, mesons, baryons) and antiparticles are states of the elementary charges and their magnetic moments. The equivalence between Newton’s gravitational law and Coulomb’s electrostatic law results naturally. In addition, we show that the gravitational constant G is expressed explicitly through the electromagnetic quantum vacuum constants putting in evidence the electromagnetic nature of gravity. We draw that G is the same for matter and antimatter but gravitational forces should be repulsive between particles and antiparticles because their masses bear naturally opposite signs. The electromagnetic quantum vacuum appears to be the natural link between quantum electrodynamics, particle physics, gravitation and cosmology and constitutes a basic step towards a unified field theory. Dark Energy and Dark Matter might originate from the electromagnetic quantum vacuum fluctuations. The calculated electromagnetic vacuum energy density, related to the cosmological constant considered responsible for the cosmic acceleration, is in good agreement with the astrophysical observations. The cosmic acceleration may be due to both “quantum vacuum fluctuations” and “matter-antimatter gravitational repelling”. All the above results are established without stating any assumptions or postulates. Next, we advance two hypotheses with cosmological impact. The first is based on the possibility that gravitation is due to the electromagnetic quantum vacuum density of states fluctuations giving rise to a photon pressure at the characteristic collective oscillation frequencies of the charge densities composing the bodies (Electromagnetic Push Gravity). The second advances that energy, matter and antimatter in the universe emerge spontaneously from the quantum vacuum fluctuations as residues that remain stable in space and we present the main principles upon which a new cosmological model may be developed overcoming the well-known Big Bang issues. 展开更多
关键词 Photons Electromagnetic Waves Electromagnetic Quantum Vacuum Dark Light Kenons GRAVITATION Matter-Antimatter Antigravity Electromagnetic Push gravity Dark Energy Cosmological Constant Dark Matter Elementary Charges Mass-Charge Relation Cosmology Unified Field Theory
在线阅读 下载PDF
Effects of mesoscale gravity waves on sporadic E simulated by a one-dimensional dynamic model 被引量:1
2
作者 Xu Zhou ZeZhong Li +1 位作者 XinAn Yue LiBo Liu 《Earth and Planetary Physics》 EI CAS 2025年第1期1-9,共9页
In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale G... In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases. 展开更多
关键词 sporadic E ion tidal layer gravity waves numerical simulation
在线阅读 下载PDF
3D crustal density modeling of Egypt using GOCE satellite gravity data and seismic integration 被引量:1
3
作者 Moataz Sayed Mohamed Sobh +2 位作者 Salah Saleh Amal Othman Ahmed Elmahmoudi 《Earthquake Science》 2025年第2期110-125,共16页
A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques inclu... A 3D crustal model was constructed using a combination of cutting-edge techniques,which were integrated to provide a density model for Egypt and address the sporadic distribution of seismic data.These techniques include obtaining gravity data from the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),creating seismic profiles,analyzing the receiver functions of seismic data,obtaining information from boreholes,and providing geological interpretations.GOCE satellite gravity data were processed to construct a preliminary model based on nonlinear inversions of the data.A regional crustal thickness model was developed using receiver functions,seismic refraction profiles,and geological insights.The inverted model was validated using borehole data and compared with seismic estimates.The model exhibited strong consistency and revealed a correlation between crustal thickness,geology,and tectonics of Egypt.It showed that the shallowest depths of the Moho are located in the north along the Mediterranean Sea and in the eastern part along the Red Sea,reflecting an oceanic plate with a thin,high-density crust.The deepest Moho depths are located in the southwestern part of Egypt,Red Sea coastal mountains,and Sinai Peninsula.The obtained 3D model of crustal thickness provided finely detailed Moho depth estimates that aligned closely with geology and tectonic characteristics of Egypt,contributing valuable insights into the subsurface structure and tectonic processes of region. 展开更多
关键词 GOCE satellite gravity Moho depth crustal modeling gravity inversion
在线阅读 下载PDF
Comprehensive recovery of rare earth elements and gypsum from phosphogypsum:A wastewater free process combining gravity separation and hydrometallurgy 被引量:1
4
作者 Jialin Qing Dapeng Zhao +6 位作者 Li Zeng Guiqing Zhang Liang Zhou Jiawei Du Qinggang Li Zuoying Cao Shengxi Wu 《Journal of Rare Earths》 2025年第2期362-370,I0005,共10页
Comprehensive utilization of phosphogypsum(PG)has attracted much attention,especially for the recovery of rare earth elements(REEs)and gypsum due to the issues of stockpile,environmental pollution,and waste of associa... Comprehensive utilization of phosphogypsum(PG)has attracted much attention,especially for the recovery of rare earth elements(REEs)and gypsum due to the issues of stockpile,environmental pollution,and waste of associated resources.Traditional utilization methods suffered the issues of low REEs leaching efficiency,huge amount of CaSO_(4)saturated wastewater and high recovery cost.To solve these issues,this study investigated the occurrence of REEs in PG and the leaching of REEs.The results show that REEs in PG are in the forms of(1)REEs mineral inclusions,(2)REEs isomorphous substitution of Ca^(2+)in gypsum lattice,(3)dispersed soluble REEs salts.Acid leaching results demonstrate that(1)the dissolution of gypsum matrix is the control factor of REEs leaching;(2)H_(2)SO_(4)is a promising leachant considering the recycle of leachate;(3)the gypsum matrix suffers a recrystallization during the acid leaching and releases the soluble REEs from PG to aqueous solution.For the recovery of the undissolved REEs mineral inclusions,wet sieving concentrated 37.1 wt%of the REEs in a 10.7 wt%mass,increasing REEs content from 309 to 1071 ppm.Finally,a green process combining gravity separation and hydrometallurgy is proposed.This process owns the merits of wastewater free,considerable REEs recovery(about 10%increase compared with traditional processes),excellent gypsum purification(>95 wt%CaSO_(4)·2H_(2)O,with<0.06 wt%of soluble P_(2)O_(5) and<0.015 wt%of soluble F)and reagent saving(about 2/3less reagent consumption than non-cyclical leaching). 展开更多
关键词 PHOSPHOGYPSUM Rare earths Wastewater free Recrystallization reinforcement gravity separation
原文传递
An investigation on the wind profiles and gravity wave dynamics in MLT region based on the meteor radars from the Meridian Project
5
作者 Tai Liu Zhe Wang +2 位作者 MengXi Shi Willie Soon ShiCan Qiu 《Earth and Planetary Physics》 EI CAS 2025年第1期29-38,共10页
The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometri... The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km. 展开更多
关键词 meteor radar wind field gravity wave Lomb−Scargle method
在线阅读 下载PDF
Resolution analysis of the gravity survey network in the middle and south sections of Tan-Lu fault and recent changes in the gravity field
6
作者 Xiao Liang Shi Chen +5 位作者 Fei Chu Rugang Xu Hongbo Sun Weipeng Xiao Hao Song Shupeng Li 《Geodesy and Geodynamics》 2025年第3期241-250,共10页
In this paper,we computed the fractal dimension of three survey areas within the central and southern sections of the Tan-Lu fault zone using fractal analysis.Subsequently,simulations were conducted to analyze the gra... In this paper,we computed the fractal dimension of three survey areas within the central and southern sections of the Tan-Lu fault zone using fractal analysis.Subsequently,simulations were conducted to analyze the gravity response under a forward model of equivalent density changes.Additionally,we thoroughly investigated the seismic monitoring capabilities of the gravity network in the central and southern regions of the Tan-Lu fault.Expanding on these analyses.Recent gravity field variations were examined in the mid-southern segment of the Tan-Lu fault zone and its surrounding areas from 2013 to2023.The results indicate that the observation capabilities of the northern network in the study area outperform those of the southern gravity network,with the northern network demonstrating a more evenly distributed coverage.The optimal gravity anomaly recovery effect for the entire study area is achieved at a resolution of 0.5°×0.5°.With an equivalent observable signal in the range of 30×10^(-8)m/s^(2) to 40×10^(-8)m/s^(2),the spatial resolution of the gravity network's field source is estimated to be approximately 55 km.From 2013 to 2023,a significant positive change has been observed in the gravity field within the study area.The Tan-Lu fault zone plays a crucial role in governing the crustal movement in this region,with the dextral strike-slip movement trend of the fault persisting.Small earthquakes occur more frequently in the southern section of the fault zone,while strong earthquakes are less common.The alignment of gravity field changes with the fault strike indicates ongoing activity in the fault zone without any signs of locking.In the central segment of the Tan-Lu fault zone in the Shandong region,there appears to be a weaker correlation between gravity field changes and fault trends.This discrepancy may suggest that the area is locked,resulting in the accumulation of stress and strain.It is imperative to monitor the continuous evolution of the gravity field in this region to gain insights into potential seismic risks. 展开更多
关键词 Tan-Lu fault gravity observation network Monitoring ability gravity change FRACTAL
原文传递
Tropical Cyclone Simulations:The Impact of Model Top/Damping Layer and the Role of Stratospheric Gravity Waves
7
作者 Xu WANG Yuan WANG +2 位作者 Lifeng ZHANG Yun ZHANG Jiping GUAN 《Advances in Atmospheric Sciences》 2025年第11期2290-2304,共15页
This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,wh... This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,which propagate upward and outward into the stratosphere.These SGWs can reach the damping layer,which is a consequence of the numerical scheme employed,where they can affect the tangential circulation through the dragging and forcing processes.In models with a higher top boundary,this tangential circulation develops far from the TC and has minimal direct impact on TC intensity.By comparison,in models with a lower top(e.g.,20 km),the damping layer is located just above the top of the TC.The SGW dragging in the damping layer and the consequent tangential force can thus induce ascent outside the eyewall,promote latent heat release,tilt the eyewall,and enlarge the inner-core radius.This process will reduce inner-core vorticity advection within the boundary layer,and eventually inhibits the intensification of the TC.This suggests that when the thickness of the damping layer is 5 km,the TC numerical model top height should be at least higher than 20 km to generate more accurate simulations. 展开更多
关键词 gravity waves STRATOSPHERE tropical cyclones numerical simulations damping layer model top
在线阅读 下载PDF
Dynamic changes of gravity field before the Luding Ms6.8 earthquake and its crustal material migration characteristics
8
作者 Qingqing Tan Chongyang Shen +5 位作者 Jiapei Wang Xiong Yang Wen Jin Minghui Zhang Hongbo Tan Guangliang Yang 《Geodesy and Geodynamics》 2025年第2期214-222,共9页
On September 5, 2022, an earthquake of magnitude M_(S)6.8 occurred in Luding County, Sichuan Province.This earthquake occurred at the key part of the southeast-clockwise extrusion of material on the eastern margin of ... On September 5, 2022, an earthquake of magnitude M_(S)6.8 occurred in Luding County, Sichuan Province.This earthquake occurred at the key part of the southeast-clockwise extrusion of material on the eastern margin of the Qinghai Plateau, the Y-shaped confluence of the Xianshuihe, Longmenshan and Anninghe fault zones. In this study, the three-dimensional dynamic crustal density changes in the earthquake area are obtained by the typical gravity change data from 2019 to 2022 before the earthquake and gravity inversion by growing bodies. The results indicate that gravity changes presented an obvious fourquadrant and gradient belt distribution in the Luding area before the earthquake. The threedimensional density horizontal slices show that small density changes occurred at the epicenter in the mid-to-upper crust between 2019.9-2020.9 and 2019.9-2021.9. At the same time, the surrounding areas exhibited a positive and negative quadrant distribution. These observations indicate that the source region was likely in a stable locked state, with locking-in shear forces oriented in the NW and NE directions. From 2021.9 to 2022.8, the epicentral region showed negative density changes, indicating that the source region was in the expansion stage, approaching a near-seismic state. The three-dimensional density vertical slices reveal a southeastward migration of positive and negative densities near the epicenter and on the western of the Xianshuihe Fault Zone, indicating that the material is flowing out to the southeast. The observed local negative density changes at the epicenter along the Longmenshan Fault Zone are likely associated with the NE-oriented extensional stress shown by the seismic source mechanism. The above results can provide a basis for interpreting pre-earthquake gravity and density changes,thereby contributing to the advancement of earthquake precursor theory. 展开更多
关键词 Luding earthquake gravity changes Three-dimensional density changes gravity inversion
原文传递
Gravity well-inspired double friction pendulum system for bridges under pulse-like near-fault earthquakes
9
作者 Sasa Cao Osman E.Ozbulut 《Resilient Cities and Structures》 2025年第1期83-100,共18页
When a coin is tossed to a gravity well,it will spiral instead of falling directly to the center.Inspired by this phenomenon,a gravity well-inspired double friction pendulum system(GW-DFPS)is developed to extend the l... When a coin is tossed to a gravity well,it will spiral instead of falling directly to the center.Inspired by this phenomenon,a gravity well-inspired double friction pendulum system(GW-DFPS)is developed to extend the length of sliding trajectories of bridge superstructures during pulse-like near-fault earthquakes.As a result,a greater amount of energy will be dissipated due to the frictional sliding of the isolators.The GW-DFPS consists of a spherical surface and an outer surface described by a 1/x or logarithmic function to build gravity well.Full-scale isolators were fabricated and their response was characterized considering various parameters such as the friction material of slider,surface roughness of sliding surfaces,and applied vertical loads.Additionally,a finite element model of the isolator was created using the experimental test data.Numerical simulations were performed on a case-study bridge structure isolated using both a conventional DFPS system and the proposed GW-DFPS systems.The experimental results reveal that the proposed isolators exhibit stable response under vertical loads varying from 200 kN to 1000 kN with a negative stiffness response when the isolator slides at the outer sliding surface.The numerical simulations of the selected bridge structure demonstrate that the GW-DFPS significantly extends the sliding trajectory lengths of the superstructure during half of the earthquake pulses,resulting in increased energy dissipation during this interval.The kinetic energies of the bridge isolated by GW-DFPS are consistently lower than those of the bridge isolated by the other two kinds of isolators,resulting lower shear forces on the bridge. 展开更多
关键词 Friction pendulum bearing gravity well TRAJECTORY EARTHQUAKES BRIDGES
在线阅读 下载PDF
The Origin of the Strong Force in Quantum Gravity
10
作者 Edwin Eugene Klingman 《Journal of Modern Physics》 2025年第1期198-227,共30页
Quantum gravity is an attempt to resolve incompatibilities between general relativity and quantum theory. Primordial field theory incorporates gravity and electrodynamics and has derived fermion mass gap, half integra... Quantum gravity is an attempt to resolve incompatibilities between general relativity and quantum theory. Primordial field theory incorporates gravity and electrodynamics and has derived fermion mass gap, half integral spin, and fractional charges. This paper extends PFT to hadron physics with a “solenoidal flux”-based explanation of quark confinement differing significantly from Lattice QCD “color flux”-based construction. The theory is presented qualitatively and used to predict hadronic and nuclear properties. Electrodynamic-based analogies help yield numerical results far more intuitively than corresponding QCD results. The origins of QCD and PFT are discussed. A more quantitative description of hadron dynamics is in progress. 展开更多
关键词 Primordial Field Solenoidal Flux-Tube Lattice QCD Hadron Form Factor DUALITY SELF-INTERACTION Yang-Mills gravity
在线阅读 下载PDF
Gravity Falls and Why the Fish Doesn’t Think: Nondeterministic Spacetime Ethics and a New Multiverse Aeon
11
作者 Nicolas Vantis 《Philosophy Study》 2025年第2期91-100,共10页
Based on the Many Worlds Interpretation,I describe reality as a multilayer spacetime,where parallel layers play the role of alternative timelines.I link physics to ethics,arguing that one’s moral choices shape one’s... Based on the Many Worlds Interpretation,I describe reality as a multilayer spacetime,where parallel layers play the role of alternative timelines.I link physics to ethics,arguing that one’s moral choices shape one’s course in the multiverse.I consider one’s ethical decisions as decoherence events,leading to movement between alternative timelines,lighter(higher)or heavier(lower)realities.Sometimes in one’s curvilinear path in spacetime,one can even experience falling toward lower layers,slipping through wormholes.This theory supports free will and the simulation hypothesis.With this background,I explore the idea that a new theory of gravity might open new possibilities to shape matter and change our worldview through the invention of new technology,transforming information into waves and then into solid matter,paving the way for a new Multiverse Aeon for humanity. 展开更多
关键词 philosophy of physics DETERMINISM ETHICS gravity relativistic spacetime Many Worlds Interpretation
在线阅读 下载PDF
Regulation of tiller angle by gravity-sensing genes in rice
12
作者 Tao Yin Yao Sun +3 位作者 Yuxin Tai Zixiang Cheng Chuanyin Wu Yi Sui 《The Crop Journal》 2025年第4期1301-1304,共4页
Endodermal cells and starch-accumulating amyloplasts are well-known gravity sensors initiating shoot gravitropism in Arabidopsis thaliana.The transcription factors SHR and SGR1 regulate endodermal cell formation,while... Endodermal cells and starch-accumulating amyloplasts are well-known gravity sensors initiating shoot gravitropism in Arabidopsis thaliana.The transcription factors SHR and SGR1 regulate endodermal cell formation,while PGM has been demonstrated to regulate starch biosynthesis within chloroplasts,which eventually leads to starch accumulation in amyloplasts.However,the molecular mechanisms of gravity sensing in monocot shoots remain largely unexplored.In this study,we investigated the roles of these genes in rice(Oryza sativa),a model monocot,using CRISPR-Cas9 to generate single,double,and higher-order mutants.The rice genome harbors two orthologs each of SHR and SGR and a single ortholog of PGM.Our results revealed that single mutants of OsPGM,but not OsSHR or OsSGR,showed compromised shoot gravitropism.However,double mutants shr1shr2 and sgr1sgr2 displayed wider tiller angles and reduced gravity sensing,suggesting functional redundancy within each gene pair.Higher-order mutants exhibited progressively severe phenotypes,with quintuple mutants almost unresponsive to gravity stimulation.These findings suggest that these genes act additively through distinct but converging pathways in shoot gravitropism regulation.This study provides novel insights into the molecular mechanisms underlying gravity sensing in monocots and offers valuable knowledge for precision breeding to optimize rice architecture. 展开更多
关键词 Shoot gravitropism gravity sensing Tiller angle RICE CRISPR-Cas9
在线阅读 下载PDF
Unifying the Nepal height system and China height system based on gravity frequency shift approach
13
作者 K.C.Shanker Ziyu Shen Wenbin Shen 《Geodesy and Geodynamics》 2025年第2期193-202,共10页
Highly accurate international height reference frames with long-term stability,global consistency,and homogeneity are crucial for monitoring sea level variations,understanding climate change,managing disasters,and sup... Highly accurate international height reference frames with long-term stability,global consistency,and homogeneity are crucial for monitoring sea level variations,understanding climate change,managing disasters,and supporting other applications that benefit scientific research and societal well-being.Currently,there are over 100 local height reference systems worldwide.Unifying these systems is a pivotal step toward constructing international height reference frames.The method introduced in this study-the gravity frequency shift via Satellite Frequency Signal Transfer(SFST)-represents a groundbreaking relativistic geodetic approach,demonstrating its potential to surpass the constraints of conventional techniques.The advent of high-precision optical atomic clocks(OAC)with an accuracy level of 1×10^(-18) has facilitated this method's implementation.The International Association of Geodesy(IAG)has established the International Height Reference System(IHRS)and its practical realization,the International Height Reference Frame(IHRF).Our study focuses on two neighbouring height systems:the China Height System(CHS)and the Nepal Height System(NHS),separated by the Himalayas and the Xizang plateau.We aim to unify these two systems by determining the geopotential and orthometric height differences between their respective height datum stations:the Qingdao Height Datum Station(QHDS)and the Madar Height Datum Station(MHDS)using a simulation experiment with the method mentioned above.Using an OAC with an accuracy of 1×10^(-18),we identified a geopotential difference of-8.348±0.464 m^(2)s^(-2) and an orthometric height difference of 0.786±0.047 m between QHDS and MHDS.These results suggest that the introduced method could unify any two height systems with fewcentimeter-level precision,emphasizing its significance in contributing to the construction of the IHRS/IHRF with today's required precision.In summary,the SFST technique is a novel geodetic method that offers an alternative for height system unification,delivering centimeter-level precision,surpassing traditional methods,and supporting the development of the IHRF. 展开更多
关键词 Vertical reference system gravity frequency shift SFST IHRF Height system unification
原文传递
Pore‑scale flow mechanism of immiscible gas‑assisted gravity drainage in strongly heterogeneous glutenite reservoirs
14
作者 Liu Yang Yan Liu +5 位作者 Wendong Wang Mingjun Li Suling Wang Benchao Xu Yongmin Shi Hao Chen 《International Journal of Coal Science & Technology》 2025年第1期246-262,共17页
Tight glutenite reservoirs are known for strong heterogeneity,complex wettability,and challenging development.Gas-Assisted Gravity Drainage(GAGD)technology has the potential to significantly improve recovery efficienc... Tight glutenite reservoirs are known for strong heterogeneity,complex wettability,and challenging development.Gas-Assisted Gravity Drainage(GAGD)technology has the potential to significantly improve recovery efficiency in glutenite reservoir.However,there is currently limited research on GAGD processes specifically designed for glutenite reservoirs,and there is a lack of relevant dimensionless numbers for predicting recovery efficiency.In this study,we developed a theoretical model based on the characteristics of glutenite reservoirs and used phase-field method to track the oil-gas interface for numerical simulations of dynamic GAGD processes.To explore the factors influencing gas-driven recovery,we simulated the effects of strong heterogeneity and dynamic wettability on the construction process under gravity assistance.Additionally,we introduced multiple dimensionless numbers(including capillary number,viscosity ratio,and Bond number)and conducted a series of numerical simulations.The results demonstrate that gravity enhances the stability of the oil-gas interface but causes unstable pressure fluctuations when passing through different-sized throat regions,particularly leading to front advancement in smaller throats.Although strong heterogeneity has negative impacts on GAGD,they can be mitigated by reducing injection velocity.Increasing oil-wettability promotes oil displacement by overcoming capillary forces,particularly in narrower pores,allowing residual oils to be expelled.Among the dimensionless numbers,the recovery efficiency is directly proportional to the Bond number and inversely proportional to the capillary number and viscosity ratio.Through sensitivity analysis of the dimensionless numbers’impact on the recovery efficiency,a new dimensionless N_(Glu) considering heterogeneity is proposed to accurately predict GAGD recovery of tight glutenite reservoirs. 展开更多
关键词 Gas-assisted gravity drainage GLUTENITE Structure heterogeneity Wettability heterogeneity Phase field method
在线阅读 下载PDF
Quantifying of spatio-temporal variations in the regional gravity field and the effectiveness of earthquake prediction:A case study of M_(S)≥5.0 earthquakes in the Sichuan-Yunnan region during 2021-2024
15
作者 Weimin Xu Shi Chen +9 位作者 Yongbo Li Jiangpei Huang Bing Zheng Yufei Han Zhaohui Chen Qiuyue Zheng Hongyan Lu Linhai Wang Honglei Li Dong Liu 《Earthquake Science》 2025年第4期375-390,共16页
Since the 1975 M_(S)7.3 Haicheng earthquake,spatio-temporal variations in the gravity field have attracted much attention as potential earthquake precursors.Recent technical advances in terrestrial gravity observation... Since the 1975 M_(S)7.3 Haicheng earthquake,spatio-temporal variations in the gravity field have attracted much attention as potential earthquake precursors.Recent technical advances in terrestrial gravity observation,along with the construction of a high-precision mobile gravity network covering Chinese mainland,have positioned temporal gravity variations(GVs)as an important tool for clarifying the signal characteristics and dynamic mechanisms of crustal sources.Reportedly,crustal mass transfer,which is affected by stress state and structural environment,alters the characteristics of the regional gravity field,thus serving as an indicator for locations of moderate to strong earthquakes and a seismology-independent predictor for regions at risk for strong earthquakes.Therefore,quantitatively tracking time-varying gravity is of paramount importance to enhance the effectiveness of earthquake prediction.In this study,we divided the areas effectively covered by the terrestrial mobile gravity network in the Sichuan-Yunnan region into small grids based on the latest observational data(since 2018)from the network.Next,we calculated the 1-and 3-year GVs and gravity gradient indicators(amplitude of analytic signal,AAS;total horizontal derivative,THD;and amplitude of vertical gradient,AVG)to quantitatively characterize variations in regional time-varying gravity field.Next,we assessed the effectiveness of gravity field variations in predicting earthquakes in the Sichuan-Yunnan region using Molchan diagrams constructed for gravity signals of 13 earthquakes(M≥5.0;occurred between 2021 and 2024)within the terrestrial mobile gravity network.The results reveal a certain correspondence between gravity field variations and the locations of moderate and strong earthquakes in the Sichuan-Yunnan region.Furthermore,the 3-year AAS and AVG outperform the 3-year THD in predicting subsequent seismic events.Notably,the AAS and AVG showed large probability gains prior to the M_(S)6.8 Luding earthquake,indicating their potential for earthquake prediction. 展开更多
关键词 gravity variation sichuan-yunnan region molchan diagram method earthquake precursor prediction efficacy
在线阅读 下载PDF
Recovery of copper and cobalt from waste rock in Democratic Republic of Congo by gravity separation combined with flotation
16
作者 Qing-qing WANG Lei SUN +5 位作者 Yang CAO Xin WANG Yi QIAO Mei-tao XIANG Guo-bin LIU Wei SUN 《Transactions of Nonferrous Metals Society of China》 2025年第2期602-612,共11页
Copper and cobalt were recovered from SICOMINES mining waste rock in the Democratic Republic of Congo.The process mineralogy of the samples was analyzed using scanning electron microscopy and energy dispersive spectro... Copper and cobalt were recovered from SICOMINES mining waste rock in the Democratic Republic of Congo.The process mineralogy of the samples was analyzed using scanning electron microscopy and energy dispersive spectroscopy.The results showed that copper minerals exhibited various forms and uneven particle sizes,while cobalt existed in the form of highly dispersed asbolane,and large amounts of easily slimed gangue minerals were filled in the samples,making it difficult to separate copper and cobalt minerals.The particle size range plays a decisive role in selecting the separation method for the copper−cobalt ore.Gravity separation was suitable for particles ranging from 43 to 246μm,while flotation was more effective for particles below 43μm.After ore grinding and particle size classification,applying a combined gravity separation(shaking table)−flotation method yielded concentrated minerals with a copper recovery of 72.83%and a cobalt recovery of 31.13%. 展开更多
关键词 copper−cobalt waste ore process mineralogy pre-classification FLOTATION gravity separation
在线阅读 下载PDF
Three-dimensional spectral analysis of gravity waves from airglow observations over Northwest China
17
作者 QinZeng Li JiYao Xu +3 位作者 Wei Yuan Xiao Liu YaJun Zhu WeiJun Liu 《Earth and Planetary Physics》 2025年第4期988-994,共7页
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr... The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs. 展开更多
关键词 AIRGLOW gravity wave three-dimensional spectral analysis seasonal variation
在线阅读 下载PDF
Research on the Observation,Simulation and Mechanism of Typhoon-induced Inertial Gravity Waves
18
作者 Yulin SHEN Hong HUANG Xuezhong WANG 《Meteorological and Environmental Research》 2025年第2期26-32,40,共8页
Typhoons,as strong convective systems,can excite multi-scale atmospheric gravity waves that travel long distances,and play an important role in momentum and energy transmission between the middle and upper atmosphere.... Typhoons,as strong convective systems,can excite multi-scale atmospheric gravity waves that travel long distances,and play an important role in momentum and energy transmission between the middle and upper atmosphere.In this paper,the research progress in the observation techniques,generation mechanism and propagation characteristics of typhoon-induced gravity waves were systematically reviewed.These studies show that based on the combined application of ground-based and space-based observation(sounding balloons,airglow imaging,and satellite remote sensing)and reanalysis data(such as ERA5),with the aid of ray tracing theory and numerical simulation technology,the mechanism of typhoon induced gravity waves and its dynamic characteristics in the middle and upper atmosphere have been better revealed.At present,there are still some insufficiencies in the fields of propagation path tracking of gravity waves,terrain multi-scale effect modeling and parameterization of inertial gravity waves,which need to be further studied in the future. 展开更多
关键词 TYPHOON gravity waves Ray tracing Terrain effect
在线阅读 下载PDF
Deep Learning in Gravity Research:A Review
19
作者 Qingkui Meng Lianghui Guo +2 位作者 Shuai Zhang Hanyu Lou Rui Li 《Journal of Earth Science》 2025年第4期1808-1819,共12页
This study explores the application of deep learning(DL)to gravity research,which is a promising intersection of earth science and information science.DL provides new methods and ideas for exploring and solving proble... This study explores the application of deep learning(DL)to gravity research,which is a promising intersection of earth science and information science.DL provides new methods and ideas for exploring and solving problems related to multiple solutions and uncertainty in the study of gravity.We focus on the application of convolutional neural networks,recurrent neural networks,and other DL technologies to gravity data denoising,interpolation,anomaly inversion,field modelling,and geological interpretation.However,importantly,the application of DL to the field of gravity research is still in its initial stage.There is significant potential for development and widespread application in overcoming limitations in sample size,network framework optimization,and generalization ability. 展开更多
关键词 deep learning gravity research status development trend
原文传递
Minimally deformed anisotropic version of Tolman-Finch-Skea stellar model in Einstein-Gauss-Bonnet gravity
20
作者 Hina Azmat Rafia Khalid +2 位作者 M Zubair Emre Demir Ertan Gudekli 《Communications in Theoretical Physics》 2025年第6期133-148,共16页
In this article,a well-known anisotropic solution,the Tolman-Finch-Skea(TFS)solution,is studied using the gravitational decoupling approach within the framework of 4D Einstein-Gauss-Bonnet(EGB)gravity.The radial metri... In this article,a well-known anisotropic solution,the Tolman-Finch-Skea(TFS)solution,is studied using the gravitational decoupling approach within the framework of 4D Einstein-Gauss-Bonnet(EGB)gravity.The radial metric potential is modified linearly through the minimal geometric deformation approach,while the temporal component of the metric remains unchanged.The system of EGB field equations is decomposed into two distinct sets of field equations:one corresponding to the standard energy-momentum tensor and the other associated with an external gravitational source.The first system is solved using the aforementioned known solution,while the second is closed by imposing the mimic constraint on pressure.Moreover,the junction conditions at the inner and outer surfaces of the stellar object are examined,considering the Boulware-Deser 4D space-time as the external geometry.The physical properties of the stellar model are analyzed using parameters such as energy conditions,causality conditions,compactness,and redshift. 展开更多
关键词 Einstein-Gauss-Bonnet gravity stellar model Tolman-Finch-Skea solution gravitational decoupling
原文传递
上一页 1 2 103 下一页 到第
使用帮助 返回顶部