In the first paper of two referring to the TEXUS 50 campaign using micro dual wavelength spectrometers (MDWS) we kinetically determined the threshold1 for GIACs (gravity-induced absorption changes) in Phycomyces to be...In the first paper of two referring to the TEXUS 50 campaign using micro dual wavelength spectrometers (MDWS) we kinetically determined the threshold1 for GIACs (gravity-induced absorption changes) in Phycomyces to be lower than 25 × 10−3 g (http://file.scirp.org/pdf/JMP_2015082810060783.pdf). In this second paper, we attended measurement of GIAC-spectra. Unexpectedly, during the upwards movement, i.e. the hypergravity phase up to top acceleration values reaching 11.6 g at 35.4 s after liftoff we observed transient GIAC-spectra ranging from 380 to 750 nm. In addition, during the whole acceleration phase of 68.2 s, another component near 700 nm develops which remains stable during the whole “free fall trajectory parabola” for 381.3 s. The subsequent reentry of the rocket leads to extraordinary deceleration values up 37.8 g, completely destroying Phycomyces sporangiophores excluding their spectral measurement. During the microgravity phase and by centrifuge operation we were unable to detect any GIAC-spectra (in contrast to kinetic MDWS-measurements, first paper).展开更多
We discuss a new gravitational effect that the wave packet of a free-fall quantum particle undergoes a spin-dependent transverse shift in Earth’s gravitational field.This effect is similar to the geometric spin Hall ...We discuss a new gravitational effect that the wave packet of a free-fall quantum particle undergoes a spin-dependent transverse shift in Earth’s gravitational field.This effect is similar to the geometric spin Hall effect(GSHE)(Aiello 2009 et al Phys.Rev.Lett.103100401),and can be called gravity-induced GSHE.This effect suggests that the free-fall wave packets of opposite spin-polarized quantum particles can be split in the direction perpendicular to spin and gravity.展开更多
Flame retardants play a crucial role in improving theflame retardant properties of polymer materials.In recent years,environmental problems caused byflame retar-dants have attracted widespread attention.It is urgent to ...Flame retardants play a crucial role in improving theflame retardant properties of polymer materials.In recent years,environmental problems caused byflame retar-dants have attracted widespread attention.It is urgent to use green and effective methods to prepareflame retardant polymers.Bioinspired nanocomposites with lay-ered structures seem to provide effective ideas,but in general,their hydrophilic raw materials limit their applications in certainfields.Here,we prepared biomimetic composites with a layered“brick-and-mortar”structure by gravity-induced depo-sition using polyimide as the polymer matrix and montmorillonite(MMT)as thefiller.The well-arranged structures of the composite material could isolate oxygen and prevent combustible gases from escaping.The gas barrier performance has been greatly improved,in which the water vapor transmission rate and the oxygen trans-mission rate decreased by 99.18%and three orders of magnitude,respectively.Theflame retardant performance has also been improved,and its limiting oxygen index can reach 67.9%.The polyimide matrix can be converted to water-insoluble by ther-mal imidization of water-soluble poly(amic acid)salt precursors,which endows the composites with low hygroscopicity.The coating containing MMT can protect against polyurethane(PU)foam fromfire.During the conical calorimetric test,the coated sample self-extinguished,and the peak heat release rate,total heat release,and total smoke production are significantly decreased by 53.39%,40.69%,and 53.03%,respectively.Taking advantage of these properties,this work utilizes a facile method to prepare biomimetic composites with low moisture absorption,excellent gas barrier properties,andflame retardancy,which have great application potential.展开更多
Under parabolic flight conditions microgravity is not lower than 3 to 5 times 10-2 g. In contrast to parabolic flights, sounding rocket flights are virtually vibrational-free allowing microgravity as low as 10-5 g. Th...Under parabolic flight conditions microgravity is not lower than 3 to 5 times 10-2 g. In contrast to parabolic flights, sounding rocket flights are virtually vibrational-free allowing microgravity as low as 10-5 g. Thus, a rotating platform serving as centrifuge allows the precise generation of gravitational forces ranging from 5 to 100 mg (not possible during parabolic flights). On this basis we determined the threshold1 for optical reflection/absorption changes in Phycomyces to be lower than 25 × 10-3 g. This compares well with the threshold determination of gravitropism in Phycomyces on a clinostat centrifuge. Kinetics of gravity-induced absorption changes and gravity as generated by the on-board centrifuge do not coincide but show a distinctive hysteresis with a latency of 4 s (75 mg-ramp, pull-up).展开更多
文摘In the first paper of two referring to the TEXUS 50 campaign using micro dual wavelength spectrometers (MDWS) we kinetically determined the threshold1 for GIACs (gravity-induced absorption changes) in Phycomyces to be lower than 25 × 10−3 g (http://file.scirp.org/pdf/JMP_2015082810060783.pdf). In this second paper, we attended measurement of GIAC-spectra. Unexpectedly, during the upwards movement, i.e. the hypergravity phase up to top acceleration values reaching 11.6 g at 35.4 s after liftoff we observed transient GIAC-spectra ranging from 380 to 750 nm. In addition, during the whole acceleration phase of 68.2 s, another component near 700 nm develops which remains stable during the whole “free fall trajectory parabola” for 381.3 s. The subsequent reentry of the rocket leads to extraordinary deceleration values up 37.8 g, completely destroying Phycomyces sporangiophores excluding their spectral measurement. During the microgravity phase and by centrifuge operation we were unable to detect any GIAC-spectra (in contrast to kinetic MDWS-measurements, first paper).
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.11 535 005 and 11 275 077)Wang also gratefully acknowledges financial support from the Scientific Research Project of Hubei Polytechnic University(Project No.20xjz02R).
文摘We discuss a new gravitational effect that the wave packet of a free-fall quantum particle undergoes a spin-dependent transverse shift in Earth’s gravitational field.This effect is similar to the geometric spin Hall effect(GSHE)(Aiello 2009 et al Phys.Rev.Lett.103100401),and can be called gravity-induced GSHE.This effect suggests that the free-fall wave packets of opposite spin-polarized quantum particles can be split in the direction perpendicular to spin and gravity.
基金Ministry of Science and Technology,Grant/Award Number:2022YFB3806601National Natural Science Foundation of China,Grant/Award Numbers:U20A20255,51873239,52103022,52203286+2 种基金Guangdong Provincial Department of Science and Technology,Grant/Award Numbers:2020B010182001,2020B010179001,2021A1515010664,2019B040401002Fellowship of China Postdoctoral Science Foundation,Grant/Award Number:2022M723572Guangxi Provincial Department of Science and Technology,Grant/Award Number:GLESI-KFKY2301013。
文摘Flame retardants play a crucial role in improving theflame retardant properties of polymer materials.In recent years,environmental problems caused byflame retar-dants have attracted widespread attention.It is urgent to use green and effective methods to prepareflame retardant polymers.Bioinspired nanocomposites with lay-ered structures seem to provide effective ideas,but in general,their hydrophilic raw materials limit their applications in certainfields.Here,we prepared biomimetic composites with a layered“brick-and-mortar”structure by gravity-induced depo-sition using polyimide as the polymer matrix and montmorillonite(MMT)as thefiller.The well-arranged structures of the composite material could isolate oxygen and prevent combustible gases from escaping.The gas barrier performance has been greatly improved,in which the water vapor transmission rate and the oxygen trans-mission rate decreased by 99.18%and three orders of magnitude,respectively.Theflame retardant performance has also been improved,and its limiting oxygen index can reach 67.9%.The polyimide matrix can be converted to water-insoluble by ther-mal imidization of water-soluble poly(amic acid)salt precursors,which endows the composites with low hygroscopicity.The coating containing MMT can protect against polyurethane(PU)foam fromfire.During the conical calorimetric test,the coated sample self-extinguished,and the peak heat release rate,total heat release,and total smoke production are significantly decreased by 53.39%,40.69%,and 53.03%,respectively.Taking advantage of these properties,this work utilizes a facile method to prepare biomimetic composites with low moisture absorption,excellent gas barrier properties,andflame retardancy,which have great application potential.
文摘Under parabolic flight conditions microgravity is not lower than 3 to 5 times 10-2 g. In contrast to parabolic flights, sounding rocket flights are virtually vibrational-free allowing microgravity as low as 10-5 g. Thus, a rotating platform serving as centrifuge allows the precise generation of gravitational forces ranging from 5 to 100 mg (not possible during parabolic flights). On this basis we determined the threshold1 for optical reflection/absorption changes in Phycomyces to be lower than 25 × 10-3 g. This compares well with the threshold determination of gravitropism in Phycomyces on a clinostat centrifuge. Kinetics of gravity-induced absorption changes and gravity as generated by the on-board centrifuge do not coincide but show a distinctive hysteresis with a latency of 4 s (75 mg-ramp, pull-up).