This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
Gravity-aided inertial navigation is a hot issue in the applications of underwater autonomous vehicle(UAV). Since the matching process is conducted with a gravity anomaly database tabulated in the form of a digital mo...Gravity-aided inertial navigation is a hot issue in the applications of underwater autonomous vehicle(UAV). Since the matching process is conducted with a gravity anomaly database tabulated in the form of a digital model and the resolution is 2’ × 2’,a filter model based on vehicle position is derived and the particularity of inertial navigation system(INS) output is employed to estimate a parameter in the system model. Meanwhile, the matching algorithm based on point mass filter(PMF) is applied and several optimal selection strategies are discussed. It is obtained that the point mass filter algorithm based on the deterministic resampling method has better practicability. The reliability and the accuracy of the algorithm are verified via simulation tests.展开更多
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
基金supported by the National Natural Science Foundation of China(61673060)the National Key R&D Plan(2016YFB0501700)
文摘Gravity-aided inertial navigation is a hot issue in the applications of underwater autonomous vehicle(UAV). Since the matching process is conducted with a gravity anomaly database tabulated in the form of a digital model and the resolution is 2’ × 2’,a filter model based on vehicle position is derived and the particularity of inertial navigation system(INS) output is employed to estimate a parameter in the system model. Meanwhile, the matching algorithm based on point mass filter(PMF) is applied and several optimal selection strategies are discussed. It is obtained that the point mass filter algorithm based on the deterministic resampling method has better practicability. The reliability and the accuracy of the algorithm are verified via simulation tests.