期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
Effects of mesoscale gravity waves on sporadic E simulated by a one-dimensional dynamic model 被引量:1
1
作者 Xu Zhou ZeZhong Li +1 位作者 XinAn Yue LiBo Liu 《Earth and Planetary Physics》 EI CAS 2025年第1期1-9,共9页
In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale G... In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases. 展开更多
关键词 sporadic E ion tidal layer gravity waves numerical simulation
在线阅读 下载PDF
An investigation on the wind profiles and gravity wave dynamics in MLT region based on the meteor radars from the Meridian Project
2
作者 Tai Liu Zhe Wang +2 位作者 MengXi Shi Willie Soon ShiCan Qiu 《Earth and Planetary Physics》 EI CAS 2025年第1期29-38,共10页
The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometri... The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km. 展开更多
关键词 meteor radar wind field gravity wave Lomb−Scargle method
在线阅读 下载PDF
Tropical Cyclone Simulations:The Impact of Model Top/Damping Layer and the Role of Stratospheric Gravity Waves
3
作者 Xu WANG Yuan WANG +2 位作者 Lifeng ZHANG Yun ZHANG Jiping GUAN 《Advances in Atmospheric Sciences》 2025年第11期2290-2304,共15页
This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,wh... This paper investigates the impact of the model top and damping layer on the numerical simulation of tropical cyclones(TCs)and reveals the significant role of stratospheric gravity waves(SGWs).TCs can generate SGWs,which propagate upward and outward into the stratosphere.These SGWs can reach the damping layer,which is a consequence of the numerical scheme employed,where they can affect the tangential circulation through the dragging and forcing processes.In models with a higher top boundary,this tangential circulation develops far from the TC and has minimal direct impact on TC intensity.By comparison,in models with a lower top(e.g.,20 km),the damping layer is located just above the top of the TC.The SGW dragging in the damping layer and the consequent tangential force can thus induce ascent outside the eyewall,promote latent heat release,tilt the eyewall,and enlarge the inner-core radius.This process will reduce inner-core vorticity advection within the boundary layer,and eventually inhibits the intensification of the TC.This suggests that when the thickness of the damping layer is 5 km,the TC numerical model top height should be at least higher than 20 km to generate more accurate simulations. 展开更多
关键词 gravity waves STRATOSPHERE tropical cyclones numerical simulations damping layer model top
在线阅读 下载PDF
Research on the Observation,Simulation and Mechanism of Typhoon-induced Inertial Gravity Waves
4
作者 Yulin SHEN Hong HUANG Xuezhong WANG 《Meteorological and Environmental Research》 2025年第2期26-32,40,共8页
Typhoons,as strong convective systems,can excite multi-scale atmospheric gravity waves that travel long distances,and play an important role in momentum and energy transmission between the middle and upper atmosphere.... Typhoons,as strong convective systems,can excite multi-scale atmospheric gravity waves that travel long distances,and play an important role in momentum and energy transmission between the middle and upper atmosphere.In this paper,the research progress in the observation techniques,generation mechanism and propagation characteristics of typhoon-induced gravity waves were systematically reviewed.These studies show that based on the combined application of ground-based and space-based observation(sounding balloons,airglow imaging,and satellite remote sensing)and reanalysis data(such as ERA5),with the aid of ray tracing theory and numerical simulation technology,the mechanism of typhoon induced gravity waves and its dynamic characteristics in the middle and upper atmosphere have been better revealed.At present,there are still some insufficiencies in the fields of propagation path tracking of gravity waves,terrain multi-scale effect modeling and parameterization of inertial gravity waves,which need to be further studied in the future. 展开更多
关键词 TYPHOON gravity waves Ray tracing Terrain effect
在线阅读 下载PDF
Three-dimensional spectral analysis of gravity waves from airglow observations over Northwest China
5
作者 QinZeng Li JiYao Xu +3 位作者 Wei Yuan Xiao Liu YaJun Zhu WeiJun Liu 《Earth and Planetary Physics》 2025年第4期988-994,共7页
The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the pr... The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derivedfrom an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainlypropagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainlypropagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filteringeffect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the averageenergy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, wereport the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance forunderstanding the regional distribution characteristics of GWs. 展开更多
关键词 AIRGLOW gravity wave three-dimensional spectral analysis seasonal variation
在线阅读 下载PDF
Application of higher-order KdV-mKdV model with higher-degree nonlinear terms to gravity waves in atmosphere 被引量:6
6
作者 李子良 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4074-4082,共9页
Higher-order Korteweg-de Vries (KdV)-modified KdV (mKdV) equations with a higher-degree of nonlinear terms are derived from a simple incompressible non-hydrostatic Boussinesq equation set in atmosphere and are use... Higher-order Korteweg-de Vries (KdV)-modified KdV (mKdV) equations with a higher-degree of nonlinear terms are derived from a simple incompressible non-hydrostatic Boussinesq equation set in atmosphere and are used to investigate gravity waves in atmosphere. By taking advantage of the auxiliary nonlinear ordinary differential equation, periodic wave and solitary wave solutions of the fifth-order KdV-mKdV models with higher-degree nonlinear terms are obtained under some constraint conditions. The analysis shows that the propagation and the periodic structures of gravity waves depend on the properties of the slope of line of constant phase and atmospheric stability. The Jacobi elliptic function wave and solitary wave solutions with slowly varying amplitude are transformed into triangular waves with the abruptly varying amplitude and breaking gravity waves under the effect of atmospheric instability. 展开更多
关键词 gravity waves higher-order KdV-mKdV equation PROPAGATING BREAKING
原文传递
Investigating the Dominant Source for the Generation of Gravity Waves during Indian Summer Monsoon Using Ground-based Measurements 被引量:3
7
作者 Debashis NATH 陈文 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第1期153-166,共14页
Over the tropics, convection, wind shear (i.e., vertical and horizontal shear of wind and/or geostrophic adjustment comprising spontaneous imbalance in jet streams) and topography are the major sources for the gener... Over the tropics, convection, wind shear (i.e., vertical and horizontal shear of wind and/or geostrophic adjustment comprising spontaneous imbalance in jet streams) and topography are the major sources for the generation of gravity waves. During the summer monsoon season (June August) over the Indian subcontinent, convection and wind shear coexist. To determine the dominant source of gravity waves during monsoon season, an experiment was conducted using mesosphere-stratosphere-troposphere (MST) radar situated at Gadanki (13.5°N, 79.2°E), a tropical observatory in the southern part of the Indian subcontinent. MST radar was operated continuously for 72 h to capture high-frequency gravity waves. During this time, a radiosonde was released every 6 h in addition to the regular launch (once daily to study low-frequency gravity waves) throughout the season. These two data sets were utilized effectively to characterize the jet stream and the associated gravity waves. Data available from collocated instruments along with satellite-based brightness temperature (TBB) data were utilized to characterize the convection in and around Gadanki. Despite the presence of two major sources of gravity wave generation (i.e., convection and wind shear) during the monsoon season, wind shear (both vertical shear and geostrophic adjustment) contributed the most to the generation of gravity waves on various scales. 展开更多
关键词 CONVECTION wind shear gravity waves MST radar RADIOSONDE
在线阅读 下载PDF
Simulation of a torrential rainstorm in Xinjiang and gravity wave analysis 被引量:4
8
作者 Rui Yang Yi Liu +1 位作者 Ling-Kun Ran Yu-Li Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期573-580,共8页
We used a weather research and forecasting model to simulate a torrential rainstorm that occurred in Xinjiang,China during June 16–17,2016.The model successfully simulated the rainfall area,precipitation intensity,an... We used a weather research and forecasting model to simulate a torrential rainstorm that occurred in Xinjiang,China during June 16–17,2016.The model successfully simulated the rainfall area,precipitation intensity,and changes in precipitation.We identified a clear wave signal using the two-dimensional fast Fourier transform method;the waves propagated westwards,with wavelengths of 45–20 km,periods of 50–120 min,and phase velocities mainly concentrated in the-25 m/s to-10 m/s range.The results of wavelet cross-spectral analysis further confirmed that the waves were gravity waves,peaking at 11:00 UTC,June 17,2016.The gravity wave signal was identified along 79.17–79.93°E,81.35–81.45°E and 81.5–81.83°E.The gravity waves detected along 81.5–81.83°E corresponded well with precipitation that accumulated in 1 h,indicating that gravity waves could be considered a rainstorm precursor in future precipitation forecasts. 展开更多
关键词 gravity wave RAINSTORM spectral analysis methods weather research and forecasting model
原文传递
Global static stability and its relation to gravity waves in the middle atmosphere 被引量:5
9
作者 Xiao Liu JiYao Xu Jia Yue 《Earth and Planetary Physics》 CSCD 2020年第5期504-512,共9页
The global atmospheric static stability(N2)in the middle atmosphere and its relation to gravity waves(GWs)were investigated by using the temperature profiles measured by the Sounding of the Atmosphere using Broadband ... The global atmospheric static stability(N2)in the middle atmosphere and its relation to gravity waves(GWs)were investigated by using the temperature profiles measured by the Sounding of the Atmosphere using Broadband Emission Radiometry(SABER)instrument from 2002 to 2018.At low latitudes,a layer with enhanced N2 occurs at an altitude of^20 km and exhibits annual oscillations caused by tropopause inversion layers.Above an altitude of^70 km,enhanced N2 exhibits semiannual oscillations at low latitudes caused by the mesosphere inversion layers and annual oscillations at high latitudes resulting from the downward shift of the summer mesopause.The correlation coefficients between N2 and GW amplitudes can be larger than 0.8 at latitudes poleward of^40°N/S.This observation provides factual evidence that a large N2 supports large-amplitude GWs and indicates that N2 plays a dominant role in maintaining GWs at least at high latitudes of the middle atmosphere.This evidence also partially explains the previous results regarding the phase changes of annual oscillations of GWs at high latitudes. 展开更多
关键词 atmospheric static stability gravity waves annual oscillation semiannual oscillation MESOPAUSE
在线阅读 下载PDF
Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection 被引量:3
10
作者 GuoChun Shi Xiong Hu +3 位作者 ZhiGang Yao WenJie Guo MingChen Sun XiaoYan Gong 《Earth and Planetary Physics》 CSCD 2021年第1期79-89,共11页
Concentric gravity waves(CGWs)in the middle and upper atmosphere show wave-coupling processes between the lower atmosphere and the middle and upper atmosphere.In this research,we analyzed a case of CGWs detected simul... Concentric gravity waves(CGWs)in the middle and upper atmosphere show wave-coupling processes between the lower atmosphere and the middle and upper atmosphere.In this research,we analyzed a case of CGWs detected simultaneously by the AIRS(Atmospheric Infrared Sounder)and the VIIRS/DNB(Day/Night Band of the Visible Infrared Imager Radiometer Suite)in the stratosphere and mesosphere.Results showed that gravity waves(GWs)were generated by the collocated Hurricane Bejisa on the island of Mauritius.The AIRS data showed arc-like phase fronts of GWs with horizontal wavelengths of 190 and 150 km at 21:08 coordinated universal time(UTC)on 1 January 2014 and at 10:00 UTC on 2 January 2014,whereas the DNB observed arced GWs with horizontal wavelengths of 60 and 150 km in the same geographic regions at 22:24 UTC.The characteristics of CGW parameters in the stratosphere(~40 km)and the mesosphere(~87 km),such as the vertical wavelength,intrinsic frequency,and intrinsic horizontal phase speed,were first derived together with the background winds from ERA5 reanalysis data and Horizontal Wind Model data through the dispersion relationship of GWs and the wind-filtering theory. 展开更多
关键词 concentric gravity waves waveLENGTH intrinsic frequency phase speed
在线阅读 下载PDF
Analysis of gravity wave activity during stratospheric sudden warmings in the northern hemisphere 被引量:2
11
作者 XuanYun Zeng Guang Zhong 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期415-422,共8页
Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The ... Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The variation characteristics of GWs during SSWs have always been an important issue.Using temperature data from January to March in 2014−2016,provided by the Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)mission,we have analyzed global GW activity at 15−40 km in the Northern Hemisphere during SSW events.During the SSWs that we studied,the stratospheric temperature rose in one or two longitudinal regions in the Northern Hemisphere;the areas affected extended to the east of 90°W.During these SSWs,the potential energy density(E_(p)of GWs expanded and covered a larger range of longitude and altitude,exhibiting an eastward and downward extension.The E_(p)usually increased,while partially filtered by the eastward zonal winds.When zonal winds weakened or turned westward,E_(p)began to strengthen.After SSWs,the E_(p)usually decreased.These observations can serve as a reference for analyzing the interaction mechanism between SSWs and GWs in future work. 展开更多
关键词 stratospheric sudden warming gravity wave wind filter
在线阅读 下载PDF
Application of deep learning to estimate stratospheric gravity wave potential energy 被引量:2
12
作者 Yue Wu Zheng Sheng XinJie Zuo 《Earth and Planetary Physics》 CSCD 2022年第1期70-82,共13页
One of the most important dynamic processes in the middle and upper atmosphere,gravity waves(GWs)play a key role in determining global atmospheric circulation.Gravity wave potential energy(GW Ep)is an important parame... One of the most important dynamic processes in the middle and upper atmosphere,gravity waves(GWs)play a key role in determining global atmospheric circulation.Gravity wave potential energy(GW Ep)is an important parameter that characterizes GW intensity,so it is critical to understand its global distribution.In this paper,a deep learning algorithm(DeepLab V3+)is used to estimate the stratospheric GW Ep.The deep learning model inputs are ERA5 reanalysis datasets and GMTED2010 terrain data.GW Ep averaged over 20−30 km from 60°S−60°N,calculated by COSMIC radio occultation(RO)data,is used as the measured value corresponding to the model output.The results show that(1)this method can effectively estimate the zonal trend of GW Ep.However,the errors between the estimated and measured value of Ep are larger in low-latitude regions than in mid-latitude regions,possibly due to the large number of convolution operations used in the deep learning model.Additionally,the measured Ep has errors associated with interpolation to the grid;this tends to be amplified in low-latitude regions because the GW Ep is larger and the RO data are relatively sparse,affecting the training accuracy.(2)The estimated Ep shows seasonal variations,which are stronger in the winter hemisphere and weaker in the summer hemisphere.(3)The effect of quasi-biennial oscillation(QBO)can be clearly observed in the monthly variation of estimated GW Ep,and its QBO amplitude may be less than that of the measured Ep. 展开更多
关键词 deep learning stratospheric gravity wave potential energy
在线阅读 下载PDF
Atmospheric frontal gravity waves observed in satellite SAR images of the Bohai Sea and Huanghai Sea 被引量:1
13
作者 LIU Shuming LI Ziwei +4 位作者 YANG Xiaofeng Pichel William G YU Yang ZHENG Quanan LI Xiaofeng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2010年第5期35-43,共9页
In the satellite synthetic aperture radar(SAR) images of the Bohai Sea and Huanghai Sea,the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km.Comparing SAR observations ... In the satellite synthetic aperture radar(SAR) images of the Bohai Sea and Huanghai Sea,the authors observe sea surface imprints of wave-like patterns with an average wavelength of 3.8 km.Comparing SAR observations with sea surface wind fields and surface weather maps,the authors find that the occurrence of the wave-like phenomena is associated with the passing of atmospheric front.The authors define the waves as atmospheric frontal gravity waves.The dynamical parameters of the wave packets are derived from statistics of 9 satellite SAR images obtained from 2002 to 2008.A two-dimensional linear physical wave model is used to analyze the generation mechanism of the waves.The atmospheric frontal wave induced wind variation across the frontal wave packet is compared with wind retrievals from the SAR images.The CMOD-5(C-band scatterometer ocean geophysical model function) is used for SAR wind retrievals VV(transmitted vertical and received vertical) for ENVISAT and HH(transmitted horizontally and received horizontally) for RADARSAT-1.A reasonable agreement between the analytical solution and the SAR observation is reached.This new SAR frontal wave observation adds to the school of SAR observations of sea surface imprints of AGWs including island lee waves,coastal lee waves,and upstream Atmospheric Gravity Waves(AGW). 展开更多
关键词 Atmospheric gravity waves atmospheric front generation mechanism synthetic aperture radar
在线阅读 下载PDF
LINEAR THEORY OF GRAVITY WAVES ON A VOIGT VISCOELASTIC MEDIUM 被引量:1
14
作者 张庆河 吴永 赵子丹 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2000年第4期301-308,共8页
Linear surface gravity waves on a semi-infinite incompressible Voigt medium are studied in this paper.Three dimensionless parameters,the dimensionless viscoelastic parameter (?),the dimensionless wave number and the d... Linear surface gravity waves on a semi-infinite incompressible Voigt medium are studied in this paper.Three dimensionless parameters,the dimensionless viscoelastic parameter (?),the dimensionless wave number and the dimensionless sur- face tension are introduced.A dimensionless characteristic equation describing the waves is derived.This is a sixth order complex algebraic equation which is solved to give the complex dispersion relation.Based on the numerical solution, two critical values of (?),(?)_A=0.607 and (?)_R=2.380,which represent the appearance of the cutoff region and the disappearance of the strong dispersion region,are found.The effects of (?) on the characteristic equation and the properties of the waves are discussed. 展开更多
关键词 Voigt viscoelastic medium linear gravity wave dispersion relation
在线阅读 下载PDF
Influence of topography on the fine structures of stratospheric gravity waves:An analysis using COSMIC-2 temperature data 被引量:1
15
作者 JiaRui Wei Xiao Liu +2 位作者 JiYao Xu QinZeng Li Hong Gao 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期497-513,共17页
We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation O... We derive the potential energy of gravity waves(GWs)in the upper troposphere and stratosphere at 45°S-45°N from December 2019 to November 2022 by using temperature profiles retrieved from the Constellation Observing System for Meteorology,Ionosphere,and Climate-2(COSMIC-2)satellite.Owing to the dense sampling of COSMIC-2,in addition to the strong peaks of gravity wave potential energy(GWPE)above the Andes and Tibetan Plateau,we found weak peaks above the Rocky,Atlas,Caucasus,and Tianshan Mountains.The land-sea contrast is responsible for the longitudinal variations of the GWPE in the lower and upper stratosphere.At 40°N/S,the peaks were mainly above the topographic regions during the winter.At 20°N/S,the peaks were a slight distance away from the topographic regions and might be the combined effect of nontopographic GWs and mountain waves.Near the Equator,the peaks were mainly above the regions with the lowest sea level altitude and may have resulted from convection.Our results indicate that even above the local regions with lower sea level altitudes compared with the Andes and Tibetan Plateau,the GWPE also exhibits fine structures in geographic distributions.We found that dissipation layers above the tropopause jet provide the body force to generate secondary waves in the upper stratosphere,especially during the winter months of each hemisphere and at latitudes of greater than 20°N/S. 展开更多
关键词 TOPOGRAPHY fine structures stratospheric gravity waves Constellation Observing System for Meteorology Ionosphere and Climate-2(COSMIC-2) dissipation layers
在线阅读 下载PDF
A class of coupled nonlinear Schrdinger equations:Painlev'e property,exact solutions,and application to atmospheric gravity waves 被引量:1
16
作者 刘萍 李子良 楼森岳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第11期1383-1404,共22页
The Painleve integrability and exact solutions to a coupled nonlinear Schrodinger (CNLS) equation applied in atmospheric dynamics are discussed. Some parametric restrictions of the CNLS equation are given to pass th... The Painleve integrability and exact solutions to a coupled nonlinear Schrodinger (CNLS) equation applied in atmospheric dynamics are discussed. Some parametric restrictions of the CNLS equation are given to pass the Painleve test. Twenty periodic cnoidal wave solutions are obtained by applying the rational expansions of fundamental Jacobi elliptic functions. The exact solutions to the CNLS equation are used to explain the generation and propagation of atmospheric gravity waves. 展开更多
关键词 coupled nonlinear SchrSdinger equation Painleve property exact solution atmospheric gravity wave
在线阅读 下载PDF
A Neural Network Based Single Footprint Temperature Retrieval for Atmospheric Infrared Sounder Measurements and Its Application to Study on Stratospheric Gravity Wave 被引量:1
17
作者 YAO Zhi-gang HONG Jun +2 位作者 CUI Xing-dong ZHAO Zeng-liang HAN Zhi-gang 《Journal of Tropical Meteorology》 SCIE 2022年第1期82-94,共13页
Satellite hyperspectral infrared sounder measurements have better horizontal resolution than other sounding techniques as it boasts the stratospheric gravity wave(GW)analysis.To accurately and efficiently derive the t... Satellite hyperspectral infrared sounder measurements have better horizontal resolution than other sounding techniques as it boasts the stratospheric gravity wave(GW)analysis.To accurately and efficiently derive the three-dimensional structure of the stratospheric GWs from the single-field-of-view(SFOV)Atmospheric Infra Red Sounder(AIRS)observations,this paper firstly focuses on the retrieval of the atmospheric temperature profiles in the altitude range of 20-60 km with an artificial neural network approach(ANN).The simulation experiments show that the retrieval bias is less than 0.5 K,and the root mean square error(RMSE)ranges from 1.8 to 4 K.Moreover,the retrieval results from 20 granules of the AIRS observations with the trained neural network(AIRS_SFOV)and the corresponding operational AIRS products(AIRS_L2)as well as the dual-regression results from the Cooperative Institute for Meteorological Satellite Studies(CIMSS)(AIRS_DR)are compared respectively with ECMWF T799 data.The comparison indicates that the standard deviation of the ANN retrieval errors is significantly less than that of the AIRS_DR.Furthermore,the analysis of the typical GW events induced by the mountain Andes and the typhoon"Soulik"using different data indicates that the AIRS_SFOV results capture more details of the stratospheric gravity waves in the perturbation amplitude and pattern than the operational AIRS products do. 展开更多
关键词 STRATOSPHERE gravity wave temperature retrieval hyperspectral infrared sounder
在线阅读 下载PDF
Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources 被引量:1
18
作者 XiangHui Xue DongSong Sun +1 位作者 HaiYun Xia XianKang Dou 《Earth and Planetary Physics》 CSCD 2020年第5期461-471,共11页
In this paper,we use wind observations by a Doppler wind LiDAR near Delingha(37.4°N,97.4°E),Qinghai,Northwestern China to study the characteristics of inertial gravity waves in the stratosphere.We focus on 1... In this paper,we use wind observations by a Doppler wind LiDAR near Delingha(37.4°N,97.4°E),Qinghai,Northwestern China to study the characteristics of inertial gravity waves in the stratosphere.We focus on 10–12 December 2013,a particularly interesting case study.Most of the time,the inertial gravity waves extracted from the LiDAR measurements were stationary with vertical wavelengths of about 9–11 km and horizontal wavelengths of about 800–1000 km.However,for parts of the observational period in this case study,a hodograph analysis indicates that different inertial gravity wave propagation features were present at lower and upper altitudes.In the middle and upper stratosphere(~30–50 km),the waves propagated downward,especially during a period of stronger winds,and to the northwest–southeast.In the lower stratosphere and upper troposphere(~10–20 km),however,waves with upward propagation and northeast–southwest orientation were dominant.By taking into account reanalysis data and satellite observations,we have confirmed the presence of different wave patterns in the lower and upper stratosphere during this part of the observational period.The combined data sets suggest that the different wave patterns at lower and upper height levels are likely to have been associated with the presence of lower and upper stratospheric jet streams. 展开更多
关键词 gravity waves LIDAR wind observations
在线阅读 下载PDF
CHARACTERISTICS OF GRAVITY WAVE PROPAGATION AND ENERGY CONVERSION IN A SUDDEN HEAVY RAINFALL EVENT 被引量:1
19
作者 ZHAO Gui-xiang WANG Yi-jie WANG Xiao-li 《Journal of Tropical Meteorology》 SCIE 2018年第3期369-384,共16页
In this paper, a sudden heavy rainfall event is analyzed, which occurred over the Yellow River midstream during 5-6 August 2014. We used observational, NCEP/NCAR reanalysis, high-resolution satellite, and numerical si... In this paper, a sudden heavy rainfall event is analyzed, which occurred over the Yellow River midstream during 5-6 August 2014. We used observational, NCEP/NCAR reanalysis, high-resolution satellite, and numerical simulation data. The main results are as follows. Under an unfavorable environmental circulation, inadequate water vapor and unfavorable dynamic conditions but sufficient energy, a local sudden heavy rainfall was caused by the release of strong unstable energy that was triggered by cold air transport into middle and lower layers and the propagation of gravity waves. The distributions of rain area, rain clusters, and 10-minute rainfall showed typical mesoscale and microscale fluctuation characteristics. In the mesoscale rain area or upstream, there was a quasi-stationary wave of mesoscale gravity waves with their propagation downstream. In the course of propagation from southwest to northeast,the wavelength became longer and the amplitude attenuated. In the various phases of gravity wave development, there were evident differences in the direction of the wave front. Wave energy was mainly in the lower layers. Unstable vertical wind shear at heights of 1-6 km provided fluctuation energy for the gravity waves. The mechanisms of heavy rainfall formation were different at Linyou and Hancheng stations. Diabatic heating was the main source of disturbed effective potential energy at Linyou. The explosive short-period strong precipitation was caused by the release of strong effective potential energy triggered by the gravity waves, and its development and propagation after that energy maximized. In contrast, the latent heat release of upstream precipitation was the main source of disturbed effective potential energy at Hancheng. This formed a positive feedback mechanism that produced continuous precipitation. In the studied event, the development of westerly belt systems had disturbed the wind field. The contribution of kinetic energy generated by this disturbance could not be ignored. The Froude number, mountain shape parameter, and ratio between mountain height and temperature inversion layer thickness had various effects of atmosphere and terrain on mesoscale and microscale mountain waves. In upper and lower layers, there were five airflows that were strengthened by the terrain. All these had important influences on local heavy rainfall at Linyou and Hancheng stations. 展开更多
关键词 heavy rainfall gravity wave energy conversion terrain fluctuation
在线阅读 下载PDF
Gravity wave activities in Tibet observed by COSMIC GPS radio occultation 被引量:1
20
作者 Attaullah Khan Shuanggen Jin 《Geodesy and Geodynamics》 2018年第6期504-511,共8页
The Gravity waves activities in the Tibetan Plateau are very complex with different effects and natures that are not clear due to the lack of high resolution data from space and also from ground. In this paper,using C... The Gravity waves activities in the Tibetan Plateau are very complex with different effects and natures that are not clear due to the lack of high resolution data from space and also from ground. In this paper,using COSMICGPS radio occultation data from 2006 to 2014, the atmospheric gravity waves activities and climatologic behaviors in Tibetan stratosphere are studied and analyzed, which show different characteristics. Most of the gravity waves with potential energy(Ep) at altitude of 17-24 km are associated with mountain waves. A good correlation between gravity wave activities and zonal wind flow is found. The distribution of gravity wave(GW) activities in Tibet is strongly connected with zonal wind variation and topography. GW activities are enhanced in winter seasons and decreased in summer seasons since strong western winds persist at all heights of the Tibetan troposphere. The gravity waves generated in the Tibetan area are mostly related to the orography of the area. The vertical wavelengths of GWS are shorter.Gravity waves in the Northwest have different vertical wavelengths in the Southeastern part of Tibetan Plateau, and dominant wavelengths are 3-5 km in the Northwest and 2-3 km in the Southeast,respectively. In the summer, the Northwestern part is the main source of wave generation while in the winter the GW is generated almost from all peaks of the Tibetan Plateau. Gravity waves in the region are clearly related to deep convection, which can also be proved by the inverse relation of Outgoing long wave radiation(OLR) and potential energy(Ep). 展开更多
关键词 gravity waves Mountain wave COSMIC GPS radio occultation TIBET
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部