Choosing appropriate background field data is crucial for gravity field matching navigation.Current research mainly uses gravity anomaly data or gravity gradient data as background fields.However,using gravity gradien...Choosing appropriate background field data is crucial for gravity field matching navigation.Current research mainly uses gravity anomaly data or gravity gradient data as background fields.However,using gravity gradient invariants in existing research is seldom a concern.The gravity gradient tensor has three invariants,named as I_(1),I_(2)and I_(3).I_(1) is a Laplace operator outside the Earth and a Poison operator inside the Earth.The focus of this study is to discuss the performance of the other two invariants of gravity gradients in matching navigation based on the Iterative Closest Contour Point(ICCP)algorithm and compare the matching results with that of the gravity gradient Tzz.The results show that they have almost the same performance when there is no noise,and the background data noises have a large impact on the matching results.There are differences in the anti-interference ability of observation noises for the different components.Under the same random noises in the observations,I2performs a little better than the other two components in terms of position error standard deviation.According to the investigations,since attitude errors can not be avoided and influence the positioning based on Tzz,we recommend adopting invariants of gravity gradients,especially I2,for matching navigation in actual cases.展开更多
The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of verti...The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.展开更多
In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are...In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are contaminated by high-frequency random noise. The separation of noise from high-frequency signals is one of the most challenging tasks in processing of gravity gradient tensor data. We first derive the Cartesian equations of gravity gradient tensors under the constraint of the Laplace equation and the expression for the gravitational potential, and then we use the Cartesian equations to fit the measured gradient tensor data by using optimal linear inversion and remove the noise from the measured data. Based on model tests, we confirm that not only this method removes the high- frequency random noise but also enhances the weak anomaly signals masked by the noise. Compared with traditional low-pass filtering methods, this method avoids removing noise by sacrificing resolution. Finally, we apply our method to real gravity gradient tensor data acquired by Bell Geospace for the Vinton Dome at the Texas-Louisiana border.展开更多
We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are...We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are contaminated by noise. Gravity gradient tensors computation on 2D infinite horizontal cylinder and 3D "Y" type dyke models show that the results computed with the DCT technique are more accurate than the FFT technique regardless if the gravity anomalies are contaminated by noise or not. The DCT precision has increased 2 to 3 times from the standard deviation. In application, the gravity gradient tensors of the Hulin basin calculated by DCT and FFT show that the two results are consistent with each other. However, the DCT results are smoother than results computed with FFT. This shows that the proposed method is less affected by noise and can better reflect the fault distribution.展开更多
We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations b...We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies.展开更多
In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance grav...In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance gravity anomalies and gravity gradient tensors. We discuss the effect of Gaussian white noise on the improved small sub-domain filtering method, as well as analyze the effect of window size on geological body edge recognition at different extension directions. Model experiments show that the improved small sub-domain filtering method is less affected by noise, filter window size, and geological body edge direction so it can more accurately depict geological body edges than the conventional small sub-domain filtering method. It also shows that deeply buried body edges can be well delineated through increasing the filter window size. In application, the enhanced gravity anomalies and calculated gravity gradient tensors of the Hulin basin show that the improved small sub-domain filtering can recognize more horizontal fault locations than the conventional method.展开更多
The conventional gravity gradient method to plot the geologic body location is fuzzy. When the depth is large and the geologic body is small, the Vzz and Vzx derivative errors are also large. We describe that using th...The conventional gravity gradient method to plot the geologic body location is fuzzy. When the depth is large and the geologic body is small, the Vzz and Vzx derivative errors are also large. We describe that using the status distinguishing factor to optimally determine the comer location is more accurate than the conventional higher-order derivative method. Thus, a better small geologic body and fault resolution is obtained by using the gravity gradient method and trial theoretical model calculation. The actual data is better processed, providing a better basis for prospecting and determination of subsurface geologic structure.展开更多
A high accuracy test of the weak equivalence principle(WEP) is of great scientific significance no matter whether its result is positive. We analyze the gravity gradient effect which is a main systematic error sourc...A high accuracy test of the weak equivalence principle(WEP) is of great scientific significance no matter whether its result is positive. We analyze the gravity gradient effect which is a main systematic error source in the test of WEP.The result shows that the uncompensated gravity gradient effect from the coupling term of the dominated gravity gradient multipole moment component q_(21) and the relative multipole field component Q_(21) contributes to an uncertainty of 1×10^(-11) on the E otv os parameter. We make a Q_(21) compensation to reduce the effect by about 20 times, and the limit of the test precision due to this coupling is improved to a level of a part in 10^(13).展开更多
In this paper, the admittance function between seafloor undulations and vertical gravity gradient anomalies was derived. Based on this admittance function, the bathymetry model of 1 minute resolution was predicted fro...In this paper, the admittance function between seafloor undulations and vertical gravity gradient anomalies was derived. Based on this admittance function, the bathymetry model of 1 minute resolution was predicted from vertical gravity gradient anomalies and ship soundings in the experimental area from the northwest Pacific. The accuracy of the model is evaluated using ship soundings and existing models, including ETOPO1, GEBCO, DTU10 and V15.1 from SIO. The model's STD is 69. 481m, comparable with V15.1 which is generally believed to have the highest accuracy.展开更多
On the basis of the results of improved analytical expression of computation of gravity anomalies due to a homogeneous polyhedral body composed of polygonal facets, and applying the forward theory with the coordinate ...On the basis of the results of improved analytical expression of computation of gravity anomalies due to a homogeneous polyhedral body composed of polygonal facets, and applying the forward theory with the coordinate transformation of vectors and tensors, we deduced both the analytical expressions for gravity gradient tensors and for magnetic anomalies of a polygon, and obtained new analytical expressions for computing vertical gradients of gravity anomalies and vertical component of magnetic anomalies caused by a polyhedral body. And also we developed explicitly the complete unified expressions for the calculation of gravity anomalies, gravity gradient, and magnetic anomalies due to the homogeneous polyhedron. Furthermore, we deduced new analytical expressions for computing vertical gradients of gravity anomalies due to a finite rectangular prism by applying the newly obtained expressions for gravity gradient tensors due to a polyhedral target body. Comparison with forward calculation of models shows the correctness of these new expressions. It will reduce forward calculation time of gravity-magnetic anomalies and improve computational efficiency by applying our unified expressions for joint forward modeling of gravity-magnetic anomalies due to homogeneous polyhedral bodies.展开更多
Autonomous orbit determination via integration of epoch-differenced gravity gradients and starlight refraction is proposed in this paper for low-Earth-orbiting satellites operating in GPSdenied environments. Starlight...Autonomous orbit determination via integration of epoch-differenced gravity gradients and starlight refraction is proposed in this paper for low-Earth-orbiting satellites operating in GPSdenied environments. Starlight refraction compensates for the significant along-track position error that occurs from only using gravity gradients and benefits from integration in terms of improved accuracy in radial and cross-track position estimates. The between-epoch differencing of gravity gradients is employed to eliminate slowly varying measurement biases and noise near the orbit revolution frequency. The refraction angle measurements are directly used and its Jacobian matrix derived from an implicit observation equation. An information fusion filter based on a sequential extended Kalman filter is developed for the orbit determination. Truth-model simulations are used to test the performance of the algorithm, and the effects of differencing intervals and orbital heights are analyzed. A semi-simulation study using actual gravity gradient data from the Gravity field and steady-state Ocean Circulation Explorer(GOCE) combined with simulated starlight refraction measurements is further conducted, and a three-dimensional position accuracy of better than 100 m is achieved.展开更多
Although satellite gravity gradient data plays a great role in determining short-wavelength part of static gravity field model,accuracy of the long-wavelength part of gravity field model recovered by them are poor,whi...Although satellite gravity gradient data plays a great role in determining short-wavelength part of static gravity field model,accuracy of the long-wavelength part of gravity field model recovered by them are poor,which leads to only a few applications in time-variable gravity investigation.The reason is that some factors limit the accuracy of the gravity field recovered using gradient data,including accuracy of the gravity gradient observations,measurement bandwidth(MBW)of gradiometer,satellite inclination,etc.This paper aims at analyzing the influence of these limitations on gravity field recovery and discusses the possibility of time-variable gravity field detection by using gravity gradient observations.Firstly,for arbitrary satellite orbit inclination,we give the frequency distributions of all the components of gravity gradients(i.e.Txx;Tyy;Tzz;Txy;Txz and Tyz,).The results show that the maximum frequency of each component of the gravity gradients is the same,i.e.l=Ts(l is degree of the gravity field model,Ts is the orbital periods),and it is not influenced by the inclination of the satellite orbits.Secondly,the paper gives a theory proof to explain why only the low orders of the coefficients are influenced by polar gaps.Big polar gaps are experimented by a numerical test with inclination of 45°.Finally,considering that the measurement bandwidth can be expanded and accuracy of gradient observations can be improved by superconducting gravity gradiometer(SGG)compared to gradiometer used in Gravity field and steadystate Ocean Circulation Explorer(GOCE),the possibility of detecting time-variable gravity using gravity gradient observations is discussed.The results show that the SGG creates errors in MBW with magnitude of 0.014 m E,which is smaller than the magnitude of the time-variable gravity gradient signals(i.e.,0.02 m E)derived from Gravity Recovery and Climate Experiment(GRACE)gravity field models.This indicates the potential of SGG in time-variable gravity detection.展开更多
The gravity gradient is a secondary derivative of gravity potential,containing more high-frequency information of Earth’s gravity field.Gravity gradient observation data require deducting its prior and intrinsic part...The gravity gradient is a secondary derivative of gravity potential,containing more high-frequency information of Earth’s gravity field.Gravity gradient observation data require deducting its prior and intrinsic parts to obtain more variational information.A model generated from a topographic surface database is more appropriate to represent gradiometric effects derived from near-surface mass,as other kinds of data can hardly reach the spatial resolution requirement.The rectangle prism method,namely an analytic integration of Newtonian potential integrals,is a reliable and commonly used approach to modeling gravity gradient,whereas its computing efficiency is extremely low.A modified rectangle prism method and a graphical processing unit(GPU)parallel algorithm were proposed to speed up the modeling process.The modified method avoided massive redundant computations by deforming formulas according to the symmetries of prisms’integral regions,and the proposed algorithm parallelized this method’s computing process.The parallel algorithm was compared with a conventional serial algorithm using 100 elevation data in two topographic areas(rough and moderate terrain).Modeling differences between the two algorithms were less than 0.1 E,which is attributed to precision differences between single-precision and double-precision float numbers.The parallel algorithm showed computational efficiency approximately 200 times higher than the serial algorithm in experiments,demonstrating its effective speeding up in the modeling process.Further analysis indicates that both the modified method and computational parallelism through GPU contributed to the proposed algorithm’s performances in experiments.展开更多
When the computational point is approaching the poles, the variance and covariance formulae of the disturbing gravity gradient tensors tend to be infinite, and this is a singular problem. In order to solve the problem...When the computational point is approaching the poles, the variance and covariance formulae of the disturbing gravity gradient tensors tend to be infinite, and this is a singular problem. In order to solve the problem, the authors deduced the practical non-singular computational formulae of the first- and second-order derivatives of the Legendre functions and two kinds of spherical harmonic functions, and then constructed the nonsingular formulae of variance and eovarianee function of disturbing gravity gradient tensors.展开更多
The Solomon Sea Basin is a Cenozoic back-arc spreading basin within the convergence system of the Pacific and Indo-Australian plates.Against the background of subduction polarity reversal,the current Solomon Sea Basin...The Solomon Sea Basin is a Cenozoic back-arc spreading basin within the convergence system of the Pacific and Indo-Australian plates.Against the background of subduction polarity reversal,the current Solomon Sea Basin gradually formed a rhombic morphology with the subduction of the basin along the New Britain Trench and the Trobriand Trough.By analyzing the vertical gravity gradient,natural earthquake and seismic reflection data,this study determines the structural characteristics of the Solomon Sea Basin.It was found that the tectonics of the basin are characterized by the original expansion structure within the central part in addition to the structure induced by the latest subduction along the basin margin.The original spreading structure of the basin presented an east–west linear graben and horst controlled by normal faults during the basin expansion period.As a result of the subduction and slab-pull of the Solomon Sea Basin,extensional structure belts parallel to the New Britain Trench formed along the basin margin.展开更多
The principle and method for solving three types of satellite gravity gradient boundary value problems by least-squares are discussed in detail. Also, kernel function expressions of the least-squares solution of three...The principle and method for solving three types of satellite gravity gradient boundary value problems by least-squares are discussed in detail. Also, kernel function expressions of the least-squares solution of three geodetic boundary value problems with the observations {Γ zz },{Γ xz , Γ yz} and {Γ xx -Γ yy ,2 Γxy}are presented. From the results of recovering gravity field using simulated gravity gradient tensor data, we can draw a conclusion that satellite gravity gradient integral formulas derived from least-squares are valid and rigorous for recovering the gravity field.展开更多
Airborne gravity gradient data contain additional short-wavelength information about the buried geological bodies.This study develops a fast interpretation method based on the gravity gradient data for the sources’sp...Airborne gravity gradient data contain additional short-wavelength information about the buried geological bodies.This study develops a fast interpretation method based on the gravity gradient data for the sources’spatial location and physical property parameters.This study analyzes the advantages of the source parameter inversion method based on tensor invariants.It proposes a normalized fast-imaging method based on tensor invariants to quickly estimate the spatial location parameters of sources through the local maximum value position of the imaging results.First,the tensor invariant characteristics and the imaging method’s effect in a simple model are analyzed using a theoretical model.Second,to analyze the imaging method’s application effect in complex model conditions,the method’s applicability is quantitatively analyzed using the data added with noise,superimposed anomalies of adjacent sources,and anomalies of deep and shallow geological bodies.The theoretical model’s simulation results show that the model’s imaging results in this study have satisfactory performance on the spatial position estimation of the sources.Finally,the method is applied to the gravity anomaly data corresponding to the Humble salt dome.The imaging results can effectively estimate the distribution of the salt dome’s horizontal and depths,verifying the practicability of the method.展开更多
In gravity gradient inversion,to choose an appropriate component combination is very important,that needs to understand the function of each component of gravity gradient in the inversion.In this paper,based on the pr...In gravity gradient inversion,to choose an appropriate component combination is very important,that needs to understand the function of each component of gravity gradient in the inversion.In this paper,based on the previous research on the characteristics of gravity gradient components,we propose a reweighted inversion method to evaluate the influence of single gravity gradient component on the inversion resolution The proposed method only adopts the misfit function of the regularized equation and introduce a depth weighting function to overcome skin effect produced in gravity gradient inversion.A comparison between different inversion results was undertaken to verify the influence of the depth weighting function on the inversion result resolution.To avoid the premise of introducing prior information,we select the depth weighting function based on the sensitivity matrix.The inversion results using the single-prism model and the complex model show that the influence of different components on the resolution of inversion results is different in different directions,however,the inversion results based on two kind of models with adding different levels of random noise are basically consistent with the results of inversion without noises.Finally,the method was applied to real data from the Vinton salt dome,Louisiana,USA.展开更多
How to deal with colored noises of GOCE (Gravity field and steady - state Ocean Circulation Explorer) satellite has been the key to data processing. This paper focused on colored noises of GOCE gradient data and the...How to deal with colored noises of GOCE (Gravity field and steady - state Ocean Circulation Explorer) satellite has been the key to data processing. This paper focused on colored noises of GOCE gradient data and the frequency spectrum analysis. According to the analysis results, gravity field model of the optima] degrees 90-240 is given, which is recovered by COCE gradient data. This paper presents an iterative Wiener filtering method based on the gravity gradient invariants. By this method a degree-220 model was calculated from GOCE SGG (Satellite Gravity Gradient) data. The degrees above 90 of ITG2010 were taken as the prior gravity field model, replacing the low degree gravity field model calculated by GOCE orbit data. GOCE gradient colored noises was processed by Wiener filtering. Finally by Wiener filtering iterative calculation, the gravity field model was restored by space-wise harmonic analysis method. The results show that the model's accuracy matched well with the ESA's (European Space Agency) results by using the same data,展开更多
The next-generation gravity satellite mission equipped with the Cold Atom Interferometry(CAI)gradiometer has great potential for the Earth's gravity field estimation.Deploying a CAI gradiometer on the Chinese Tian...The next-generation gravity satellite mission equipped with the Cold Atom Interferometry(CAI)gradiometer has great potential for the Earth's gravity field estimation.Deploying a CAI gradiometer on the Chinese Tiangong Space Station launched for long-term Earth science research not only reduces the cost compared to a dual-satellite constellation but also enhances interdisciplinary collaboration in the Earth's gravity field detection.In this study,we conducted gravity gradient-based simulations to assess the contribution of deploying a CAI gradiometer on the Tiangong Space Station to collaboratively observe the Earth's gravity field with a polar-orbit gravity satellite.The simulation results demonstrate that whether utilizing V_(yy) component,three diagonal components or full components,the derived gravity field models show significant improvements within 100 degree and above 200 degree after incorporating Tiangong Space Station.In particular,the gravity field solution recovered from three diagonal components achieves the best accuracy.In the case of using diagonal components,the collaboration observation scheme effectively reduced the cumulative geoid height error by approximately 5.3 cm(300 d/o).In the spatial domain,the incorporation of the Tiangong Space Station primarily impacts the estimated gravity field within the orbital coverage area of the space station,and this effect is particularly pronounced when just employing V_(yy) component.However,due to the limitation of angular velocity observation inaccuracy associated with the CAI gradiometer in nadir mode,there is no substantial accuracy improvement observed above 200 degree when adding gradient components.展开更多
基金funded by the Key Laboratory of Smart Earth(No.KF2023YB01-12)the National Natural Science Foundation of China(No.42074017)+1 种基金the Key Laboratory Fund Project for Simulation of Complex Electronic Systems(614201004022210)the Chinese Academy of Sciences Youth Innovation Promotion Association(2022126)。
文摘Choosing appropriate background field data is crucial for gravity field matching navigation.Current research mainly uses gravity anomaly data or gravity gradient data as background fields.However,using gravity gradient invariants in existing research is seldom a concern.The gravity gradient tensor has three invariants,named as I_(1),I_(2)and I_(3).I_(1) is a Laplace operator outside the Earth and a Poison operator inside the Earth.The focus of this study is to discuss the performance of the other two invariants of gravity gradients in matching navigation based on the Iterative Closest Contour Point(ICCP)algorithm and compare the matching results with that of the gravity gradient Tzz.The results show that they have almost the same performance when there is no noise,and the background data noises have a large impact on the matching results.There are differences in the anti-interference ability of observation noises for the different components.Under the same random noises in the observations,I2performs a little better than the other two components in terms of position error standard deviation.According to the investigations,since attitude errors can not be avoided and influence the positioning based on Tzz,we recommend adopting invariants of gravity gradients,especially I2,for matching navigation in actual cases.
基金funded jointly by the National Nature Science Funds of China(No.42274010)the Fundamental Research Funds for the Central Universities(Nos.2023000540,2023000407).
文摘The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively.
基金financially supported by the SinoProbe-09-01(201011078)
文摘In oil and mineral exploration, gravity gradient tensor data include higher- frequency signals than gravity data, which can be used to delineate small-scale anomalies. However, full-tensor gradiometry (FTG) data are contaminated by high-frequency random noise. The separation of noise from high-frequency signals is one of the most challenging tasks in processing of gravity gradient tensor data. We first derive the Cartesian equations of gravity gradient tensors under the constraint of the Laplace equation and the expression for the gravitational potential, and then we use the Cartesian equations to fit the measured gradient tensor data by using optimal linear inversion and remove the noise from the measured data. Based on model tests, we confirm that not only this method removes the high- frequency random noise but also enhances the weak anomaly signals masked by the noise. Compared with traditional low-pass filtering methods, this method avoids removing noise by sacrificing resolution. Finally, we apply our method to real gravity gradient tensor data acquired by Bell Geospace for the Vinton Dome at the Texas-Louisiana border.
基金supported by the Scientific Research Starting Foundation of HoHai University,China(2084/40801136)the Fundamental Research Funds for the Central Universities(No.2009B12514)
文摘We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are contaminated by noise. Gravity gradient tensors computation on 2D infinite horizontal cylinder and 3D "Y" type dyke models show that the results computed with the DCT technique are more accurate than the FFT technique regardless if the gravity anomalies are contaminated by noise or not. The DCT precision has increased 2 to 3 times from the standard deviation. In application, the gravity gradient tensors of the Hulin basin calculated by DCT and FFT show that the two results are consistent with each other. However, the DCT results are smoother than results computed with FFT. This shows that the proposed method is less affected by noise and can better reflect the fault distribution.
基金supported by National major special equipment development(No.2011YQ120045)The National Natural Science Fund(No.41074050 and 41304023)
文摘We use the extrapolated Tikhonov regularization to deal with the ill-posed problem of 3D density inversion of gravity gradient data. The use of regularization parameters in the proposed method reduces the deviations between calculated and observed data. We also use the depth weighting function based on the eigenvector of gravity gradient tensor to eliminate undesired effects owing to the fast attenuation of the position function. Model data suggest that the extrapolated Tikhonov regularization in conjunction with the depth weighting function can effectively recover the 3D distribution of density anomalies. We conduct density inversion of gravity gradient data from the Australia Kauring test site and compare the inversion results with the published research results. The proposed inversion method can be used to obtain the 3D density distribution of underground anomalies.
基金supported by the Scientific Research Starting Foundation of HoHai University, China (No. 2084/40801136)the Fundamental Research Funds for the Central Universities (No.2009B12514).
文摘In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance gravity anomalies and gravity gradient tensors. We discuss the effect of Gaussian white noise on the improved small sub-domain filtering method, as well as analyze the effect of window size on geological body edge recognition at different extension directions. Model experiments show that the improved small sub-domain filtering method is less affected by noise, filter window size, and geological body edge direction so it can more accurately depict geological body edges than the conventional small sub-domain filtering method. It also shows that deeply buried body edges can be well delineated through increasing the filter window size. In application, the enhanced gravity anomalies and calculated gravity gradient tensors of the Hulin basin show that the improved small sub-domain filtering can recognize more horizontal fault locations than the conventional method.
基金support by the "Eleventh Five-Year" National Science and Technology Support Program (No. 2006BAB01A02)the Pivot Program of the National Natural Science Fund (No. 40930314)
文摘The conventional gravity gradient method to plot the geologic body location is fuzzy. When the depth is large and the geologic body is small, the Vzz and Vzx derivative errors are also large. We describe that using the status distinguishing factor to optimally determine the comer location is more accurate than the conventional higher-order derivative method. Thus, a better small geologic body and fault resolution is obtained by using the gravity gradient method and trial theoretical model calculation. The actual data is better processed, providing a better basis for prospecting and determination of subsurface geologic structure.
基金supported by the National Natural Science Foundation of China(Grant Nos.11575160 and 11605065)
文摘A high accuracy test of the weak equivalence principle(WEP) is of great scientific significance no matter whether its result is positive. We analyze the gravity gradient effect which is a main systematic error source in the test of WEP.The result shows that the uncompensated gravity gradient effect from the coupling term of the dominated gravity gradient multipole moment component q_(21) and the relative multipole field component Q_(21) contributes to an uncertainty of 1×10^(-11) on the E otv os parameter. We make a Q_(21) compensation to reduce the effect by about 20 times, and the limit of the test precision due to this coupling is improved to a level of a part in 10^(13).
基金supported by the Director Foundation of Institute of Seismology,China Earthquake Administration(IS201326125)the National Natural Science Foundation of China(41204019,41304003)
文摘In this paper, the admittance function between seafloor undulations and vertical gravity gradient anomalies was derived. Based on this admittance function, the bathymetry model of 1 minute resolution was predicted from vertical gravity gradient anomalies and ship soundings in the experimental area from the northwest Pacific. The accuracy of the model is evaluated using ship soundings and existing models, including ETOPO1, GEBCO, DTU10 and V15.1 from SIO. The model's STD is 69. 481m, comparable with V15.1 which is generally believed to have the highest accuracy.
基金This paper is supported by the National Natural Science Foundation of China (No.40374039)Program for New Century Excellent Talents in University (No. NCET-04-0726)the Focused Subject Program of Beijing (No. XK104910598).
文摘On the basis of the results of improved analytical expression of computation of gravity anomalies due to a homogeneous polyhedral body composed of polygonal facets, and applying the forward theory with the coordinate transformation of vectors and tensors, we deduced both the analytical expressions for gravity gradient tensors and for magnetic anomalies of a polygon, and obtained new analytical expressions for computing vertical gradients of gravity anomalies and vertical component of magnetic anomalies caused by a polyhedral body. And also we developed explicitly the complete unified expressions for the calculation of gravity anomalies, gravity gradient, and magnetic anomalies due to the homogeneous polyhedron. Furthermore, we deduced new analytical expressions for computing vertical gradients of gravity anomalies due to a finite rectangular prism by applying the newly obtained expressions for gravity gradient tensors due to a polyhedral target body. Comparison with forward calculation of models shows the correctness of these new expressions. It will reduce forward calculation time of gravity-magnetic anomalies and improve computational efficiency by applying our unified expressions for joint forward modeling of gravity-magnetic anomalies due to homogeneous polyhedral bodies.
基金supported by the National Natural Science Foundation of China (No.11002008)funded in part by Ministry of Science and Technology of China (No.2014CB845303)
文摘Autonomous orbit determination via integration of epoch-differenced gravity gradients and starlight refraction is proposed in this paper for low-Earth-orbiting satellites operating in GPSdenied environments. Starlight refraction compensates for the significant along-track position error that occurs from only using gravity gradients and benefits from integration in terms of improved accuracy in radial and cross-track position estimates. The between-epoch differencing of gravity gradients is employed to eliminate slowly varying measurement biases and noise near the orbit revolution frequency. The refraction angle measurements are directly used and its Jacobian matrix derived from an implicit observation equation. An information fusion filter based on a sequential extended Kalman filter is developed for the orbit determination. Truth-model simulations are used to test the performance of the algorithm, and the effects of differencing intervals and orbital heights are analyzed. A semi-simulation study using actual gravity gradient data from the Gravity field and steady-state Ocean Circulation Explorer(GOCE) combined with simulated starlight refraction measurements is further conducted, and a three-dimensional position accuracy of better than 100 m is achieved.
基金funded by National Natural Science Foundation of China(No.41674026,41404019,41774089)Fundamental Research Funds for the Central University(No.2652018027)+2 种基金China Geological Survey(DD20191006)Open Research Fund of Qian Xuesen Laboratory of Space Technology,CAST(No.GZZKFJJ2020006)Open Research Fund of Key Laboratory of Space Utilization,Chinese Academy of Sciences(LSU-KFJJ201902)
文摘Although satellite gravity gradient data plays a great role in determining short-wavelength part of static gravity field model,accuracy of the long-wavelength part of gravity field model recovered by them are poor,which leads to only a few applications in time-variable gravity investigation.The reason is that some factors limit the accuracy of the gravity field recovered using gradient data,including accuracy of the gravity gradient observations,measurement bandwidth(MBW)of gradiometer,satellite inclination,etc.This paper aims at analyzing the influence of these limitations on gravity field recovery and discusses the possibility of time-variable gravity field detection by using gravity gradient observations.Firstly,for arbitrary satellite orbit inclination,we give the frequency distributions of all the components of gravity gradients(i.e.Txx;Tyy;Tzz;Txy;Txz and Tyz,).The results show that the maximum frequency of each component of the gravity gradients is the same,i.e.l=Ts(l is degree of the gravity field model,Ts is the orbital periods),and it is not influenced by the inclination of the satellite orbits.Secondly,the paper gives a theory proof to explain why only the low orders of the coefficients are influenced by polar gaps.Big polar gaps are experimented by a numerical test with inclination of 45°.Finally,considering that the measurement bandwidth can be expanded and accuracy of gradient observations can be improved by superconducting gravity gradiometer(SGG)compared to gradiometer used in Gravity field and steadystate Ocean Circulation Explorer(GOCE),the possibility of detecting time-variable gravity using gravity gradient observations is discussed.The results show that the SGG creates errors in MBW with magnitude of 0.014 m E,which is smaller than the magnitude of the time-variable gravity gradient signals(i.e.,0.02 m E)derived from Gravity Recovery and Climate Experiment(GRACE)gravity field models.This indicates the potential of SGG in time-variable gravity detection.
文摘The gravity gradient is a secondary derivative of gravity potential,containing more high-frequency information of Earth’s gravity field.Gravity gradient observation data require deducting its prior and intrinsic parts to obtain more variational information.A model generated from a topographic surface database is more appropriate to represent gradiometric effects derived from near-surface mass,as other kinds of data can hardly reach the spatial resolution requirement.The rectangle prism method,namely an analytic integration of Newtonian potential integrals,is a reliable and commonly used approach to modeling gravity gradient,whereas its computing efficiency is extremely low.A modified rectangle prism method and a graphical processing unit(GPU)parallel algorithm were proposed to speed up the modeling process.The modified method avoided massive redundant computations by deforming formulas according to the symmetries of prisms’integral regions,and the proposed algorithm parallelized this method’s computing process.The parallel algorithm was compared with a conventional serial algorithm using 100 elevation data in two topographic areas(rough and moderate terrain).Modeling differences between the two algorithms were less than 0.1 E,which is attributed to precision differences between single-precision and double-precision float numbers.The parallel algorithm showed computational efficiency approximately 200 times higher than the serial algorithm in experiments,demonstrating its effective speeding up in the modeling process.Further analysis indicates that both the modified method and computational parallelism through GPU contributed to the proposed algorithm’s performances in experiments.
基金supported by the National 973 Foundation of China(61322201)the National Natural Science Foundation of China(41304022,41174026,41104047)Key Laboratory Foundation of Geo-space Environment and Geodesy,Ministry of Education(11-01-03)
文摘When the computational point is approaching the poles, the variance and covariance formulae of the disturbing gravity gradient tensors tend to be infinite, and this is a singular problem. In order to solve the problem, the authors deduced the practical non-singular computational formulae of the first- and second-order derivatives of the Legendre functions and two kinds of spherical harmonic functions, and then constructed the nonsingular formulae of variance and eovarianee function of disturbing gravity gradient tensors.
基金supported by the National Natural Science Foundation of China(Grant Nos.91858215 and 41906048)。
文摘The Solomon Sea Basin is a Cenozoic back-arc spreading basin within the convergence system of the Pacific and Indo-Australian plates.Against the background of subduction polarity reversal,the current Solomon Sea Basin gradually formed a rhombic morphology with the subduction of the basin along the New Britain Trench and the Trobriand Trough.By analyzing the vertical gravity gradient,natural earthquake and seismic reflection data,this study determines the structural characteristics of the Solomon Sea Basin.It was found that the tectonics of the basin are characterized by the original expansion structure within the central part in addition to the structure induced by the latest subduction along the basin margin.The original spreading structure of the basin presented an east–west linear graben and horst controlled by normal faults during the basin expansion period.As a result of the subduction and slab-pull of the Solomon Sea Basin,extensional structure belts parallel to the New Britain Trench formed along the basin margin.
文摘The principle and method for solving three types of satellite gravity gradient boundary value problems by least-squares are discussed in detail. Also, kernel function expressions of the least-squares solution of three geodetic boundary value problems with the observations {Γ zz },{Γ xz , Γ yz} and {Γ xx -Γ yy ,2 Γxy}are presented. From the results of recovering gravity field using simulated gravity gradient tensor data, we can draw a conclusion that satellite gravity gradient integral formulas derived from least-squares are valid and rigorous for recovering the gravity field.
基金supported by the National Key R&D Program of China(No.2020YFE0201300)Natural Science Foundation of Jilin Province(No.20210508033RQ)Fundamental Research Funds for the Central Universities and Geological Survey Project(No.DD20190129).
文摘Airborne gravity gradient data contain additional short-wavelength information about the buried geological bodies.This study develops a fast interpretation method based on the gravity gradient data for the sources’spatial location and physical property parameters.This study analyzes the advantages of the source parameter inversion method based on tensor invariants.It proposes a normalized fast-imaging method based on tensor invariants to quickly estimate the spatial location parameters of sources through the local maximum value position of the imaging results.First,the tensor invariant characteristics and the imaging method’s effect in a simple model are analyzed using a theoretical model.Second,to analyze the imaging method’s application effect in complex model conditions,the method’s applicability is quantitatively analyzed using the data added with noise,superimposed anomalies of adjacent sources,and anomalies of deep and shallow geological bodies.The theoretical model’s simulation results show that the model’s imaging results in this study have satisfactory performance on the spatial position estimation of the sources.Finally,the method is applied to the gravity anomaly data corresponding to the Humble salt dome.The imaging results can effectively estimate the distribution of the salt dome’s horizontal and depths,verifying the practicability of the method.
基金supported by the National Key R&D Program of China(Nos.2016YFC0303002 and 2017YFC0601701)China Geological Survey Program(No.DD20191007)
文摘In gravity gradient inversion,to choose an appropriate component combination is very important,that needs to understand the function of each component of gravity gradient in the inversion.In this paper,based on the previous research on the characteristics of gravity gradient components,we propose a reweighted inversion method to evaluate the influence of single gravity gradient component on the inversion resolution The proposed method only adopts the misfit function of the regularized equation and introduce a depth weighting function to overcome skin effect produced in gravity gradient inversion.A comparison between different inversion results was undertaken to verify the influence of the depth weighting function on the inversion result resolution.To avoid the premise of introducing prior information,we select the depth weighting function based on the sensitivity matrix.The inversion results using the single-prism model and the complex model show that the influence of different components on the resolution of inversion results is different in different directions,however,the inversion results based on two kind of models with adding different levels of random noise are basically consistent with the results of inversion without noises.Finally,the method was applied to real data from the Vinton salt dome,Louisiana,USA.
基金supported by the National Natural Science Foundation of China(41404020)
文摘How to deal with colored noises of GOCE (Gravity field and steady - state Ocean Circulation Explorer) satellite has been the key to data processing. This paper focused on colored noises of GOCE gradient data and the frequency spectrum analysis. According to the analysis results, gravity field model of the optima] degrees 90-240 is given, which is recovered by COCE gradient data. This paper presents an iterative Wiener filtering method based on the gravity gradient invariants. By this method a degree-220 model was calculated from GOCE SGG (Satellite Gravity Gradient) data. The degrees above 90 of ITG2010 were taken as the prior gravity field model, replacing the low degree gravity field model calculated by GOCE orbit data. GOCE gradient colored noises was processed by Wiener filtering. Finally by Wiener filtering iterative calculation, the gravity field model was restored by space-wise harmonic analysis method. The results show that the model's accuracy matched well with the ESA's (European Space Agency) results by using the same data,
基金National Key R&D Program of China(2021YFB3900101)the National Natural Science Foundation of China(42174099 and 42192532)It is also partly supported by the Fundamental Research Funds for the Central Universities.
文摘The next-generation gravity satellite mission equipped with the Cold Atom Interferometry(CAI)gradiometer has great potential for the Earth's gravity field estimation.Deploying a CAI gradiometer on the Chinese Tiangong Space Station launched for long-term Earth science research not only reduces the cost compared to a dual-satellite constellation but also enhances interdisciplinary collaboration in the Earth's gravity field detection.In this study,we conducted gravity gradient-based simulations to assess the contribution of deploying a CAI gradiometer on the Tiangong Space Station to collaboratively observe the Earth's gravity field with a polar-orbit gravity satellite.The simulation results demonstrate that whether utilizing V_(yy) component,three diagonal components or full components,the derived gravity field models show significant improvements within 100 degree and above 200 degree after incorporating Tiangong Space Station.In particular,the gravity field solution recovered from three diagonal components achieves the best accuracy.In the case of using diagonal components,the collaboration observation scheme effectively reduced the cumulative geoid height error by approximately 5.3 cm(300 d/o).In the spatial domain,the incorporation of the Tiangong Space Station primarily impacts the estimated gravity field within the orbital coverage area of the space station,and this effect is particularly pronounced when just employing V_(yy) component.However,due to the limitation of angular velocity observation inaccuracy associated with the CAI gradiometer in nadir mode,there is no substantial accuracy improvement observed above 200 degree when adding gradient components.