Low gravity fields have been simulated through magnetic acceleration to conduct experimental study on bearing capacity of circular footings on a type of crushable planetary regolith simulant,which has comparable densi...Low gravity fields have been simulated through magnetic acceleration to conduct experimental study on bearing capacity of circular footings on a type of crushable planetary regolith simulant,which has comparable density and particle size distribution of lunar soil.The loadesettlement responses of surface spread footings are obtained by investigating the relative density,footing size and gravity effects.Applying the hyperbolic asymptote method,normalised foundation stiffness and ultimate bearing capacity are obtained by curve fitting and predicted by power functions using multivariate nonlinear regression.The results show that the nonlinear gravity effect is not negligible,related to stress condition,soil dilatancy and mobilised friction angle.A cone penetration test(CPT)-based method for prediction of bearing capacity is proposed with correlations between ultimate bearing capacity of footings and shallow penetration stiffness of CPTs,avoiding the uncertainties of soil property estimations.Analyses of allowable bearing capacity and footing influence zone in consideration of footing size and gravity effects could therefore improve the design of shallow foundations on the Moon and Mars,and provide new understandings and potential implications to the bearing capacity of shallow foundations on crushable granular material in both terrestrial and extraterrestrial geotechnical engineering.展开更多
The problems of the earth's gravity fields' visualization are both focus and puzzle currently. Aiming at multiresolution rendering, modeling of the Earth's gravity fields' data is discussed in the pape...The problems of the earth's gravity fields' visualization are both focus and puzzle currently. Aiming at multiresolution rendering, modeling of the Earth's gravity fields' data is discussed in the paper by using LOD algorithm based on Quad Tree. First, this paper employed the method of LOD based on Quad Tree to divide up the regional gravity anomaly data, introduced the combined node evaluation system that was composed of viewpoint related and roughness related systems, and then eliminated the T-cracks that appeared among the gravity anomaly data grids with different resolutions. The test results demonstrated that the gravity anomaly data grids' rendering effects were living, and the computational power was low. Therefore, the proposed algorithm was a suitable method for modeling the gravity anomaly data and has potential applications in visualization of the earth's gravity fields.展开更多
Based on the study of high-precision gravity data obtained from recent studies and the regional gravi- ty network for Yunnan province, a variation in the regional gravity field was identified before the occurrence of ...Based on the study of high-precision gravity data obtained from recent studies and the regional gravi- ty network for Yunnan province, a variation in the regional gravity field was identified before the occurrence of the Yunnan Jinggu M6.6 earthquake.展开更多
The pattern evolution and dynamic mechanism of the dynamic changes of regional gravity fields occurring before and after the Wenchuan Ms8.0 earthquake are analyzed, based on five epochs of 1998 -2007 mobile gravity da...The pattern evolution and dynamic mechanism of the dynamic changes of regional gravity fields occurring before and after the Wenchuan Ms8.0 earthquake are analyzed, based on five epochs of 1998 -2007 mobile gravity data from the middle-south section of the north-south seismic belt, and two epochs of field research data collected after the 2008 Wenchuan earthquake in combination with GPS data, leveling observations, and geotectonic environment data. The regional dynamic gravity changes demonstrate the effects of the eastward flow of solid matter in the Qinghai-Tibetan plateau and the preparation of the 2008 Wenchuan earthquake (2- 10 yr). The two most meaningful gravity indicators of the Wcnchuan earthquake preparation are the positive (increasing) gravity changes occurring over many years in the southwest epicenter and the largescale gradient zone of gravity variation, with the cumulative difference between the two sides of the gradient zone of gravity exceeding 200 μGal. The positive gravity changes may facilitate a constant energy accumulation and the gradient belt may support seismic shear breakage. Overall, the gravity changes associated with the earthquake preparation indicate a pattern of accelerating increase-decelerating increase-earthquake occurrence. The Songpan-Ganzi block generally displays a negative gravity change, providing evidence for a local upwarp- ing of the deep crust-mantle and an interior expansion of the deep crust attributable to high temperatures. The viewpoint is consistent with the dilatant mechanism for earthquake preparation.展开更多
Small-scale lithospheric terranes (microplates) are important building-blocks of continental accretion but their presence is often obscured by subsequent plate-margin deformation events and by younger volcano-sediment...Small-scale lithospheric terranes (microplates) are important building-blocks of continental accretion but their presence is often obscured by subsequent plate-margin deformation events and by younger volcano-sedimentary covers. The geological fabric of the eastern Anatolian-Caucasian region results from the sequential accretion of lithospheric terranes against the southwestern continental margin of the Eurasian plate. Widespread sedimentary and volcanic covers conceal some of the principal tectonic boundaries in the region, and major uncertainties persist as to the number and extent of the various terranes.展开更多
The southern part of the Kyushu-Palau Ridge(KPR)is located at the conjunction of the West Philippine Basin,the Parece Vela Basin,the Palau Basin,and the Caroline Basin.This area has extremely complex structures and is...The southern part of the Kyushu-Palau Ridge(KPR)is located at the conjunction of the West Philippine Basin,the Parece Vela Basin,the Palau Basin,and the Caroline Basin.This area has extremely complex structures and is critical for the research on the tectonic evolution of marginal seas in the Western Pacific Ocean.However,only few studies have been completed on the southern part,and the geophysical fields and deep structures in this part are not well understood.Given this,this study finely depicts the characteristics of the gravity and magnetic anomalies and extracts information on deep structures in the southern part of the KPR based on the gravity and magnetic data obtained from the 11th expedition of the deep-sea geological survey of the Western Pacific Ocean conducted by the Guangzhou Marine Geological Survey,China Geological Survey using the R/V Haiyangdizhi 6.Furthermore,with the data collected on the water depth,sediment thickness,and multichannel seismic transects as constraints,a 3D density model and Moho depths of the study area were obtained using 3D density inversion.The results are as follows.(1)The gravity and magnetic anomalies in the study area show distinct zoning and segmentation.In detail,the gravity and magnetic anomalies to the south of 11°N of the KPR transition from high-amplitude continuous linear positive anomalies into low-amplitude intermittent linear positive anomalies.In contrast,the gravity and magnetic anomalies to the north of 11°N of the KPR are discontinuous and show alternating positive and negative anomalies.These anomalies can be divided into four sections,of which the separation points correspond well to the locations of deep faults,thus,revealing different field-source attributes and tectonic genesis of the KPR.(2)The Moho depth in the basins in the study area is 6-12 km.The Moho depth in the southern part of KPR show segmentation.Specifically,the depth is 10‒12 km to the north of 11°N,12‒14 km from 9.5°N to 11°N,14-16 km from 8.5°N to 9.5°N,and 16‒25 km in the Palau Islands.(3)The KPR is a remnant intra-oceanic arc with the oceanic-crust basement.which shows noticeably discontinuous from north to south in geological structure and is intersected by NEE-trending lithospheric-scale deep faults.With large and deep faults F3 and F1(the Mindanao fault)as boundaries overall,the southern part of the KPR can be divided into three zones.In detail,the portion to the south of 8.5°N(F3)is a tectonically active zone,the KPR portion between 8.5°N and 11°N is a tectonically active transition zone,and the portion to the north of 11°N is a tectonically inactive zone.(4)The oceanic crust in the KPR is slightly thicker than that in the basins on both sides of the ridge,and it is inferred that the KPR formed from the thickening of the oceanic crust induced by the upwelling of deep magma in the process of rifting of remnant arcs during the Middle Oligocene.In addition,it is inferred that the thick oceanic crust under the Palau Islands is related to the constant upwelling of deep magma induced by the continuous northwestward subduction of the Caroline Plate toward the Palau Trench since the Late Oligocene.This study provides a scientific basis for systematically understanding the crustal attributes,deep structures,and evolution of the KPR.展开更多
We have examined an isotropic and homogeneous cosmological model in f(R,T^(φ))gravity,where R represents the Ricci scalar and T^(φ)exhibits the energy momentum tensor's trace.We examine the stability criteria by...We have examined an isotropic and homogeneous cosmological model in f(R,T^(φ))gravity,where R represents the Ricci scalar and T^(φ)exhibits the energy momentum tensor's trace.We examine the stability criteria by performing the dynamical system analysis for our model f(R,T^(φ))=R+2(a T^(φ)+b),where a and b are the constants.We derive a set of autonomous equations and find their solutions by assuming a flat potential V0.We assess the equilibrium points from these equations and find the eigenvalues.We analyze the physical interpretation of the phase space for this system.We obtain three stable equilibrium points.We also examine the interaction between the scalar field and dark energy,represented by Q=ψH_(ρde)and determine the equilibrium points for this interaction.We identify four stable equilibrium points for this interaction.We calculate the values of the physical parameters for both scenarios at each equilibrium point,indicating the Universe's accelerated expansion.展开更多
Igneous rocks in the South China Sea have broad prospects for oil and gas exploration.Integrated geophysical methods are important approaches to study the distribution of igneous rocks and to determine and identify ig...Igneous rocks in the South China Sea have broad prospects for oil and gas exploration.Integrated geophysical methods are important approaches to study the distribution of igneous rocks and to determine and identify igneous rock bodies.Aimed at the characteristics of gravity and magnetic fields in the South China Sea,several potential field processing methods are preferentially selected.Reduction to the pole by variable inclinations in the area of low magnetic latitudes is used to perform reduction processing on magnetic anomalies.The preferential continuation method is used to separate gravity and magnetic anomalies and extract the gravity and magnetic anomaly information of igneous rocks in the shallow part of the South China Sea.The 3D spatial equivalent distribution of igneous rocks in South China Sea is illustrated by the 3 D correlation imaging of magnetic anomalies.Since the local anomaly boundaries are highlighted gravity and magnetic gradients,the distribution characters of different igneous rocks are roughly outlined by gravity and magnetic correlation analysis weighted by gradient.The results show the distribution of igneous rocks is controlled and influenced by deep crustal structure and faulting.展开更多
This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2 from satellite gravimetry,satellite altimetry,and Earth Gravitational Model 2008(EGM2008)-derived gravity data based ...This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2 from satellite gravimetry,satellite altimetry,and Earth Gravitational Model 2008(EGM2008)-derived gravity data based on the theory of the ellipsoidal harmonic analysis and coefficient transformation(EHA-CT).We first derive the related formulas of the EHA-CT method,which is used for computing the spherical harmonic coefficients from grid area-mean and point gravity anomalies on the ellipsoid.The derived formulas are successfully evaluated based on numerical experiments.Then,based on the derived least-squares formulas of the EHA-CT method,we develop the new model SGG-UGM-2 up to degree 2190 and order 2159 by combining the observations of the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),the normal equation of the Gravity Recovery and Climate Experiment(GRACE),marine gravity data derived from satellite altimetry data,and EGM2008-derived continental gravity data.The coefficients of degrees 251–2159 are estimated by solving the block-diagonal form normal equations of surface gravity anomalies(including the marine gravity data).The coefficients of degrees 2–250 are determined by combining the normal equations of satellite observations and surface gravity anomalies.The variance component estimation technique is used to estimate the relative weights of different observations.Finally,global positioning system(GPS)/leveling data in the mainland of China and the United States are used to validate SGG-UGM-2 together with other models,such as European improved gravity model of the earth by new techniques(EIGEN)-6C4,GECO,EGM2008,and SGG-UGM-1(the predecessor of SGG-UGM-2).Compared to other models,the model SGG-UGM-2 shows a promising performance in the GPS/leveling validation.All GOCE-related models have similar performances both in the mainland of China and the United States,and better performances than that of EGM2008 in the mainland of China.Due to the contribution of GRACE data and the new marine gravity anomalies,SGG-UGM-2 is slightly better than SGG-UGM-1 both in the mainland of China and the United States.展开更多
Objectives: This article presents a new computational procedure to discover scratches buried in the earth's crust. We also validate this new interdisciplinary analysis method with regional gravity data located in a ...Objectives: This article presents a new computational procedure to discover scratches buried in the earth's crust. We also validate this new interdisciplinary analysis method with regional gravity data located in a well-known Dabie orogenic zone for test. Methods: Based on the scratch analysis method evolved with mathematical morphology of surfaces, we present a procedure that extracts information of the crustal scratches from regional gravity data. Because the crustal scratches are positively and highly correlated to crustal deformation bands, it can be used for delineation of the crustal deformation belts. The scratches can be quantitatively characterized by calculation of the ridge coefficient function, whose high value traces delineate the deformation bands hidden in the regional gravity field. In addition, because the degree of crustal deformation is an important indicator of tectonic unit divisions, so the crust can be further divided according to the degree of crustal deformation into some tectonic units by using the ridge coefficient data, providing an objective base map for earth scientists to build tectonic models with quantitative evidence. Results: After the ridge coefficients are calculated, we can further enhance the boundary of high ridge-coefficient blocks, resulting in the so-called ridge-edge coefficient function. The high-value ridge-edge coefficients are well correlated with the edge faults of tectonic units underlay, providing accurate positioning of the base map for compilation of regional tectonic maps. In order to validate this new interdisciplinary analysis method, we select the Dabie orogenic zone as a pilot area for test, where rock outcrops are well exposed on the surface and detailed geological and geophysical surveys have been carried out. Tests show that the deformation bands and the tectonic units, which are conformed by tectonic scientists based on surface observations, are clearly displayed on the ridge and ridge-edge coefficient images obtained in this article. Moreover, these computer-generated images provide more accurate locations and geometric details. Conclusions: This work demonstrates that application of modern mathematical tools can promote the quantitative degree in research of modern geosciences, helping to open a door to develop a new branch of mathematical tectonics.展开更多
Super gravity field was employed to enhance electrolytic reaction for the preparation of copper powders.The morphology, microstructure and size of copper powders were characterized by scanning electron microscopy,X-ra...Super gravity field was employed to enhance electrolytic reaction for the preparation of copper powders.The morphology, microstructure and size of copper powders were characterized by scanning electron microscopy,X-ray diffractometry and laser particle analysis.The results indicated that current efficiencies of electrolytic copper powders under super gravity field increased by more than 20% compared with that under normal gravity condition.Cell voltage under super gravity field was also much lower.The size of copper powders decreased with the increase of gravity coefficient(G).The increase of current efficiency can be contributed to the disturbance of electrode/electrolyte interface and enhanced mass transfer of Cu2+ in super gravity field.Meanwhile,the huge gravity acceleration would promote the detachment of copper powders from electrode surface during electrolytic process,which can prevent the growth of copper powders.展开更多
Although satellite gravity gradient data plays a great role in determining short-wavelength part of static gravity field model,accuracy of the long-wavelength part of gravity field model recovered by them are poor,whi...Although satellite gravity gradient data plays a great role in determining short-wavelength part of static gravity field model,accuracy of the long-wavelength part of gravity field model recovered by them are poor,which leads to only a few applications in time-variable gravity investigation.The reason is that some factors limit the accuracy of the gravity field recovered using gradient data,including accuracy of the gravity gradient observations,measurement bandwidth(MBW)of gradiometer,satellite inclination,etc.This paper aims at analyzing the influence of these limitations on gravity field recovery and discusses the possibility of time-variable gravity field detection by using gravity gradient observations.Firstly,for arbitrary satellite orbit inclination,we give the frequency distributions of all the components of gravity gradients(i.e.Txx;Tyy;Tzz;Txy;Txz and Tyz,).The results show that the maximum frequency of each component of the gravity gradients is the same,i.e.l=Ts(l is degree of the gravity field model,Ts is the orbital periods),and it is not influenced by the inclination of the satellite orbits.Secondly,the paper gives a theory proof to explain why only the low orders of the coefficients are influenced by polar gaps.Big polar gaps are experimented by a numerical test with inclination of 45°.Finally,considering that the measurement bandwidth can be expanded and accuracy of gradient observations can be improved by superconducting gravity gradiometer(SGG)compared to gradiometer used in Gravity field and steadystate Ocean Circulation Explorer(GOCE),the possibility of detecting time-variable gravity using gravity gradient observations is discussed.The results show that the SGG creates errors in MBW with magnitude of 0.014 m E,which is smaller than the magnitude of the time-variable gravity gradient signals(i.e.,0.02 m E)derived from Gravity Recovery and Climate Experiment(GRACE)gravity field models.This indicates the potential of SGG in time-variable gravity detection.展开更多
The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,suc...The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,such as surface deformation,groundwater storage changes,and mass migration before and after earthquakes.Based on repeated terrestrial gravity measurements at 198 gravity stations in the Sichuan-Yunnan region(SYR)from 2015 to 2017,we determine a time series of degree 120 gravity fields using the localized spherical harmonic(Slepian)basis functions.Our results show that adopting the first 6 Slepian basis functions is sufficient for effective localized Slepian modeling in the SYR.The differences between two gravity campaigns at the same time of year show an obvious correlation with tectonic features.The degree 120 timevariable gravity models presented in this paper will benefit the study of the regional mass migration inside the crust of the SYR and supplement the existing geophysical models for the China Seismic Experimental Site.展开更多
The Tibetan Plateau(TP)is the youngest orogenic belt resulting from a continental collision on the Earth.It is a natural laboratory for studying continental dynamics,such as continental convergence,plate subduction,an...The Tibetan Plateau(TP)is the youngest orogenic belt resulting from a continental collision on the Earth.It is a natural laboratory for studying continental dynamics,such as continental convergence,plate subduction,and plateau uplift.Investigating the deep structure of the TP has always been a popular issue in geological research.The Moho is the boundary between the crust and the mantle and therefore plays a crucial role in the Earth’s structure.Parameters such as depth and lateral variation,as well as the fine structure of the crust-mantle interface,reveal the lithospheric dynamics in the TP.Two methods are generally employed to study the Moho surface:seismic detection and gravity inversion.Seismic detection has the characteristic of high precision,but it is limited to a few cross-sectional lines and is quite costly.It is not suitable for and cannot be carried out over a large area of the TP.The Moho depth over a large area can be obtained through gravity inversion,but this method is affected by the nature of gravity data,and the accuracy of the inversion method is lower than that of seismic detection.In this work,a high-precision gravity field model was selected.The Parker-Oldenburg interface inversion method was used,within the constraints of seismic observations,and the Bott iteration method was introduced to enhance the inversion efficiency.The Moho depth in the TP was obtained with high precision,consistent with the seismic detection results.The research results showed that the shape of the Moho in the TP is complex and the variation range is large,reaching 60−80 km.In contrast with the adjacent area,a clear zone of sharp variation appears at the edge of the plateau.In the interior of the TP,the buried depth of the Moho is characterized by two depressions and two uplifts.To the south of the Yarlung Zangbo River,the Moho inclines to the north,and to the north,the Moho depresses downward,which was interpreted as the Indian plate subducting to the north below Xizang.The Moho depression on the north side of the Qiangtang block,reaching 72 km deep,may be a result of the southward subduction of the lithosphere.The Moho uplift of the Qiangtang block has the same strike as the Bangong−Nujiang suture zone,which may indicate that the area is compensated by a low-density and low-velocity mantle.展开更多
There were 34 times repeated gravity measurements along Beijing, Tianjin, and Tangshan from 1971 to 1981. The gravity field around the Tangshan area continuously increased about 98×10 -8 m·s -2 fro...There were 34 times repeated gravity measurements along Beijing, Tianjin, and Tangshan from 1971 to 1981. The gravity field around the Tangshan area continuously increased about 98×10 -8 m·s -2 from 1971~1975. The peaks of the gravity changes occurred in the middle of 1975. Preliminary study of mechanism of the gravity changes before and after the Tangshan earthquake was done with combination of deformation and seismic data in the area. The final results show that the deep boundary surface up lifted with a rate of 2.5 m/a in the Tangshan area from 1971~1975.展开更多
The block-diagonal least squares method, which theoretically has specific requirements for the observation data and the spatial distribution of its precision, plays an important role in ultra-high degree gravity field...The block-diagonal least squares method, which theoretically has specific requirements for the observation data and the spatial distribution of its precision, plays an important role in ultra-high degree gravity field determination. On the basis of block-diagonal least squares method, three data processing strategies are employed to determine the gravity field models using three kinds of simulated global grid data with different noise spatial distri- bution in this paper. The numerical results show that when we employed the weight matrix corresponding to the noise of the observation data, the model computed by the least squares using the full normal matrix has much higher precision than the one estimated only using the block part of the normal matrix. The model computed by the block-diagonal least squares method without the weight matrix has slightly lower precision than the model computed using the rigorous least squares with the weight matrix. The result offers valuable reference to the using of block-diagonal least squares method in ultra-high gravity model determination.展开更多
The China seas and adjacent areas contain numerous petroleum basins.One of the main challenges for future oil and gas exploration is to identify the inherent patterns of petroleum basin distribution.The formation and ...The China seas and adjacent areas contain numerous petroleum basins.One of the main challenges for future oil and gas exploration is to identify the inherent patterns of petroleum basin distribution.The formation and evolution of petroleum basins along with the migration and accumulation of oil and gas are often closely related to the tectonic environment.The gravity and magnetic fields with high lateral resolution and wide coverage provide important data for regional tectonic research.Based on the gravity data in the Global Satellite Gravity Anomaly Database(V31.1)and magnetic data from the Earth Magnetic Anomaly Grid(2-arc-minute resolution)(V2),this study uses integrated gravity and magnetic field technique to obtain integrated gravity and magnetic field result for the China seas and adjacent areas,and then adopts the normalized vertical derivative of the total horizontal derivative technique to conduct partition.Finally,it identifies the relationship between the partition characteristics and tectonics as well as the patterns of petroleum basin occurrence.The research shows that the partition of gravity and magnetic field integrated result has a good correlation with the Neo-Cathaysian tectonic system and tectonic units.The petroleum basins are characterized according to three blocks arranged from north to south and four zones arranged from east to west.The north-south block structure causes the uneven distribution of oil and gas resources in the mainland area and the differences in the hydrocarbon-bearing strata.Petroleum basins are more abundant in the north than in the south.The ages of the main oil-and gas-bearing strata are“Paleozoic–Mesozoic,Paleozoic–Mesozoic–Cenozoic,and Paleozoic–Mesozoic”,in order from north to south.The difference in the overall type of oil and gas resources in all basins is controlled by the east–west zonation.From east to west,the oil and gas resource type exhibits a wave-like pattern of“oil and gas,gas,oil and gas,gas”.The vertical distribution is characterized by an upper oil(Mesozoic–Cenozoic)and lower gas(Mesozoic–Paleozoic)structure.Within the study area,the Paleozoic marine strata should be the main strata of future natural gas exploration.展开更多
With the improvement of the accuracy of the inertial system,the influence of the disturbing gravity field on the accuracy of long-range rocket has become increasingly prominent.However,in actual engineering,there are ...With the improvement of the accuracy of the inertial system,the influence of the disturbing gravity field on the accuracy of long-range rocket has become increasingly prominent.However,in actual engineering,there are problems of low accuracy and being time-consuming for disturbing gravity field compensation.In view of this,this paper proposes a set of online comprehensive solutions combining disturbing gravity reconstruction and stellar correction.According to the pre-launch binding parameters,the net function assignment method is used in the navigation system to calculate disturbing gravity in the boost phase online.In the guidance system,a closed-loop guidance online compensation method is proposed based on the state-space perturbation method for the disturbing gravity in the coast phase.At the same time,the vertical deflection can also be corrected by stellar guidance.The calculation results are simulated and verified under different circumstances.Simulation results show that the proposed online compensation algorithm has an accuracy improvement compared with the element compensation algorithm on ground.And the stellar guidance algorithm can further correct the impact deviation.The impact deviation after comprehensive compensation does not exceed 50 m,and the compensation percentage is greater than 65%.展开更多
The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matri...The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation(VCE) and minimum standard deviation(MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the firstorder Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.展开更多
Taking the main land of Europe as the region to be studied, the potential of the new satellite gravity technique: satellite-to-satellite tracking (SST) and improving the accuracy of regional gravity field model with t...Taking the main land of Europe as the region to be studied, the potential of the new satellite gravity technique: satellite-to-satellite tracking (SST) and improving the accuracy of regional gravity field model with the SST models are investigated. The drawbacks of these models are discussed. With GPM98C as the reference, the gravity anomaly residuals of several other models, the latest SST global gravity field models (EIGEN series and GGM series), were computed and compared. The results of the comparison show that in the selected region, some systematic errors with periodical properties exist in the EIGEN and GGM’s S series models in the high degree and order. Some information that was not shown in the classic gravity models is detected in the low and middle degree and order of EIGEN and GGM’s S series models. At last, the effective maximum degrees and orders of SST models are suggested.展开更多
基金The authors wish to thank the support from the‘Double Tops’Construction Independent Innovation Project of China University of Mining and Technology(Grant No.2018ZZCX04).
文摘Low gravity fields have been simulated through magnetic acceleration to conduct experimental study on bearing capacity of circular footings on a type of crushable planetary regolith simulant,which has comparable density and particle size distribution of lunar soil.The loadesettlement responses of surface spread footings are obtained by investigating the relative density,footing size and gravity effects.Applying the hyperbolic asymptote method,normalised foundation stiffness and ultimate bearing capacity are obtained by curve fitting and predicted by power functions using multivariate nonlinear regression.The results show that the nonlinear gravity effect is not negligible,related to stress condition,soil dilatancy and mobilised friction angle.A cone penetration test(CPT)-based method for prediction of bearing capacity is proposed with correlations between ultimate bearing capacity of footings and shallow penetration stiffness of CPTs,avoiding the uncertainties of soil property estimations.Analyses of allowable bearing capacity and footing influence zone in consideration of footing size and gravity effects could therefore improve the design of shallow foundations on the Moon and Mars,and provide new understandings and potential implications to the bearing capacity of shallow foundations on crushable granular material in both terrestrial and extraterrestrial geotechnical engineering.
文摘The problems of the earth's gravity fields' visualization are both focus and puzzle currently. Aiming at multiresolution rendering, modeling of the Earth's gravity fields' data is discussed in the paper by using LOD algorithm based on Quad Tree. First, this paper employed the method of LOD based on Quad Tree to divide up the regional gravity anomaly data, introduced the combined node evaluation system that was composed of viewpoint related and roughness related systems, and then eliminated the T-cracks that appeared among the gravity anomaly data grids with different resolutions. The test results demonstrated that the gravity anomaly data grids' rendering effects were living, and the computational power was low. Therefore, the proposed algorithm was a suitable method for modeling the gravity anomaly data and has potential applications in visualization of the earth's gravity fields.
基金supported by the National Natural Science Foundation of China(41304059,41304059)the Seismic Industry Research Project(201308004)
文摘Based on the study of high-precision gravity data obtained from recent studies and the regional gravi- ty network for Yunnan province, a variation in the regional gravity field was identified before the occurrence of the Yunnan Jinggu M6.6 earthquake.
基金financially supported by the National Natural Science Foundation of China (40574012,40374031)Key Project of the National Science & Technology Pillar Program in the Eleventh Five-year Plan(2006BAC01B02-02)Monitoring Project of China Earthquake Administration (201210)
文摘The pattern evolution and dynamic mechanism of the dynamic changes of regional gravity fields occurring before and after the Wenchuan Ms8.0 earthquake are analyzed, based on five epochs of 1998 -2007 mobile gravity data from the middle-south section of the north-south seismic belt, and two epochs of field research data collected after the 2008 Wenchuan earthquake in combination with GPS data, leveling observations, and geotectonic environment data. The regional dynamic gravity changes demonstrate the effects of the eastward flow of solid matter in the Qinghai-Tibetan plateau and the preparation of the 2008 Wenchuan earthquake (2- 10 yr). The two most meaningful gravity indicators of the Wcnchuan earthquake preparation are the positive (increasing) gravity changes occurring over many years in the southwest epicenter and the largescale gradient zone of gravity variation, with the cumulative difference between the two sides of the gradient zone of gravity exceeding 200 μGal. The positive gravity changes may facilitate a constant energy accumulation and the gradient belt may support seismic shear breakage. Overall, the gravity changes associated with the earthquake preparation indicate a pattern of accelerating increase-decelerating increase-earthquake occurrence. The Songpan-Ganzi block generally displays a negative gravity change, providing evidence for a local upwarp- ing of the deep crust-mantle and an interior expansion of the deep crust attributable to high temperatures. The viewpoint is consistent with the dilatant mechanism for earthquake preparation.
基金funded by a PRIN 2017-2020 project grant from the Italian Ministry of University and Research(MUR)we thank Paolo Ballato(University Roma Tre)and Magdala Tesauro(University of Trieste)for support during the projectChiara Civiero(University of Trieste)is thanked for sharing the GNSS compilation.
文摘Small-scale lithospheric terranes (microplates) are important building-blocks of continental accretion but their presence is often obscured by subsequent plate-margin deformation events and by younger volcano-sedimentary covers. The geological fabric of the eastern Anatolian-Caucasian region results from the sequential accretion of lithospheric terranes against the southwestern continental margin of the Eurasian plate. Widespread sedimentary and volcanic covers conceal some of the principal tectonic boundaries in the region, and major uncertainties persist as to the number and extent of the various terranes.
基金This work was supported by the project of China Geological Survey(DD20191002)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0208)the National Natural Science Foundation of China(41606080,41576068)。
文摘The southern part of the Kyushu-Palau Ridge(KPR)is located at the conjunction of the West Philippine Basin,the Parece Vela Basin,the Palau Basin,and the Caroline Basin.This area has extremely complex structures and is critical for the research on the tectonic evolution of marginal seas in the Western Pacific Ocean.However,only few studies have been completed on the southern part,and the geophysical fields and deep structures in this part are not well understood.Given this,this study finely depicts the characteristics of the gravity and magnetic anomalies and extracts information on deep structures in the southern part of the KPR based on the gravity and magnetic data obtained from the 11th expedition of the deep-sea geological survey of the Western Pacific Ocean conducted by the Guangzhou Marine Geological Survey,China Geological Survey using the R/V Haiyangdizhi 6.Furthermore,with the data collected on the water depth,sediment thickness,and multichannel seismic transects as constraints,a 3D density model and Moho depths of the study area were obtained using 3D density inversion.The results are as follows.(1)The gravity and magnetic anomalies in the study area show distinct zoning and segmentation.In detail,the gravity and magnetic anomalies to the south of 11°N of the KPR transition from high-amplitude continuous linear positive anomalies into low-amplitude intermittent linear positive anomalies.In contrast,the gravity and magnetic anomalies to the north of 11°N of the KPR are discontinuous and show alternating positive and negative anomalies.These anomalies can be divided into four sections,of which the separation points correspond well to the locations of deep faults,thus,revealing different field-source attributes and tectonic genesis of the KPR.(2)The Moho depth in the basins in the study area is 6-12 km.The Moho depth in the southern part of KPR show segmentation.Specifically,the depth is 10‒12 km to the north of 11°N,12‒14 km from 9.5°N to 11°N,14-16 km from 8.5°N to 9.5°N,and 16‒25 km in the Palau Islands.(3)The KPR is a remnant intra-oceanic arc with the oceanic-crust basement.which shows noticeably discontinuous from north to south in geological structure and is intersected by NEE-trending lithospheric-scale deep faults.With large and deep faults F3 and F1(the Mindanao fault)as boundaries overall,the southern part of the KPR can be divided into three zones.In detail,the portion to the south of 8.5°N(F3)is a tectonically active zone,the KPR portion between 8.5°N and 11°N is a tectonically active transition zone,and the portion to the north of 11°N is a tectonically inactive zone.(4)The oceanic crust in the KPR is slightly thicker than that in the basins on both sides of the ridge,and it is inferred that the KPR formed from the thickening of the oceanic crust induced by the upwelling of deep magma in the process of rifting of remnant arcs during the Middle Oligocene.In addition,it is inferred that the thick oceanic crust under the Palau Islands is related to the constant upwelling of deep magma induced by the continuous northwestward subduction of the Caroline Plate toward the Palau Trench since the Late Oligocene.This study provides a scientific basis for systematically understanding the crustal attributes,deep structures,and evolution of the KPR.
基金funded by Researchers Supporting Project No.RSPD2025R733,King Saud University,Riyadh,Saudi Arabia。
文摘We have examined an isotropic and homogeneous cosmological model in f(R,T^(φ))gravity,where R represents the Ricci scalar and T^(φ)exhibits the energy momentum tensor's trace.We examine the stability criteria by performing the dynamical system analysis for our model f(R,T^(φ))=R+2(a T^(φ)+b),where a and b are the constants.We derive a set of autonomous equations and find their solutions by assuming a flat potential V0.We assess the equilibrium points from these equations and find the eigenvalues.We analyze the physical interpretation of the phase space for this system.We obtain three stable equilibrium points.We also examine the interaction between the scalar field and dark energy,represented by Q=ψH_(ρde)and determine the equilibrium points for this interaction.We identify four stable equilibrium points for this interaction.We calculate the values of the physical parameters for both scenarios at each equilibrium point,indicating the Universe's accelerated expansion.
基金the National 863 Projects(Nos.2006AA06Z111,2006AA06201-3,and 2006AA09A101-3)National Special Project(No.SinoProbe-01-05)Open Project of the National Key Laboratory for Geological Processes and Mineral Resources(No.GPMR0942).
文摘Igneous rocks in the South China Sea have broad prospects for oil and gas exploration.Integrated geophysical methods are important approaches to study the distribution of igneous rocks and to determine and identify igneous rock bodies.Aimed at the characteristics of gravity and magnetic fields in the South China Sea,several potential field processing methods are preferentially selected.Reduction to the pole by variable inclinations in the area of low magnetic latitudes is used to perform reduction processing on magnetic anomalies.The preferential continuation method is used to separate gravity and magnetic anomalies and extract the gravity and magnetic anomaly information of igneous rocks in the shallow part of the South China Sea.The 3D spatial equivalent distribution of igneous rocks in South China Sea is illustrated by the 3 D correlation imaging of magnetic anomalies.Since the local anomaly boundaries are highlighted gravity and magnetic gradients,the distribution characters of different igneous rocks are roughly outlined by gravity and magnetic correlation analysis weighted by gradient.The results show the distribution of igneous rocks is controlled and influenced by deep crustal structure and faulting.
基金We appreciate the help from Torsten Mayer-Gürr and Andreas Kvas for providing us the NEQ system of the ITSG-Grace2018 model.This research was financially supported by the National Natural Science Foundation of China(41574019 and 41774020)the German Academic Exchange Service(DAAD)Thematic Network Project(57421148)+2 种基金the Major Project of High-Resolution Earth Observation System,and Science Fund for Creative Research Groups of the National Natural Science Foundation of China(41721003)the Fundamental Research Funds for the Central Universities(N170103009)We also thank the editor and the anonymous reviewers for their constructive remarks that helped us to improve the quality of the manuscript.
文摘This paper focuses on estimating a new high-resolution Earth’s gravity field model named SGG-UGM-2 from satellite gravimetry,satellite altimetry,and Earth Gravitational Model 2008(EGM2008)-derived gravity data based on the theory of the ellipsoidal harmonic analysis and coefficient transformation(EHA-CT).We first derive the related formulas of the EHA-CT method,which is used for computing the spherical harmonic coefficients from grid area-mean and point gravity anomalies on the ellipsoid.The derived formulas are successfully evaluated based on numerical experiments.Then,based on the derived least-squares formulas of the EHA-CT method,we develop the new model SGG-UGM-2 up to degree 2190 and order 2159 by combining the observations of the Gravity Field and Steady-State Ocean Circulation Explorer(GOCE),the normal equation of the Gravity Recovery and Climate Experiment(GRACE),marine gravity data derived from satellite altimetry data,and EGM2008-derived continental gravity data.The coefficients of degrees 251–2159 are estimated by solving the block-diagonal form normal equations of surface gravity anomalies(including the marine gravity data).The coefficients of degrees 2–250 are determined by combining the normal equations of satellite observations and surface gravity anomalies.The variance component estimation technique is used to estimate the relative weights of different observations.Finally,global positioning system(GPS)/leveling data in the mainland of China and the United States are used to validate SGG-UGM-2 together with other models,such as European improved gravity model of the earth by new techniques(EIGEN)-6C4,GECO,EGM2008,and SGG-UGM-1(the predecessor of SGG-UGM-2).Compared to other models,the model SGG-UGM-2 shows a promising performance in the GPS/leveling validation.All GOCE-related models have similar performances both in the mainland of China and the United States,and better performances than that of EGM2008 in the mainland of China.Due to the contribution of GRACE data and the new marine gravity anomalies,SGG-UGM-2 is slightly better than SGG-UGM-1 both in the mainland of China and the United States.
基金National Science Foundation and Chinese Geological Survey for supporting this work
文摘Objectives: This article presents a new computational procedure to discover scratches buried in the earth's crust. We also validate this new interdisciplinary analysis method with regional gravity data located in a well-known Dabie orogenic zone for test. Methods: Based on the scratch analysis method evolved with mathematical morphology of surfaces, we present a procedure that extracts information of the crustal scratches from regional gravity data. Because the crustal scratches are positively and highly correlated to crustal deformation bands, it can be used for delineation of the crustal deformation belts. The scratches can be quantitatively characterized by calculation of the ridge coefficient function, whose high value traces delineate the deformation bands hidden in the regional gravity field. In addition, because the degree of crustal deformation is an important indicator of tectonic unit divisions, so the crust can be further divided according to the degree of crustal deformation into some tectonic units by using the ridge coefficient data, providing an objective base map for earth scientists to build tectonic models with quantitative evidence. Results: After the ridge coefficients are calculated, we can further enhance the boundary of high ridge-coefficient blocks, resulting in the so-called ridge-edge coefficient function. The high-value ridge-edge coefficients are well correlated with the edge faults of tectonic units underlay, providing accurate positioning of the base map for compilation of regional tectonic maps. In order to validate this new interdisciplinary analysis method, we select the Dabie orogenic zone as a pilot area for test, where rock outcrops are well exposed on the surface and detailed geological and geophysical surveys have been carried out. Tests show that the deformation bands and the tectonic units, which are conformed by tectonic scientists based on surface observations, are clearly displayed on the ridge and ridge-edge coefficient images obtained in this article. Moreover, these computer-generated images provide more accurate locations and geometric details. Conclusions: This work demonstrates that application of modern mathematical tools can promote the quantitative degree in research of modern geosciences, helping to open a door to develop a new branch of mathematical tectonics.
基金Projects(50804043, 50674011) supported by the National Natural Science Foundation of ChinaProject(KZCX2-YW-412-2) supported the Knowledge Innovation Program of Chinese Academy of Sciences
文摘Super gravity field was employed to enhance electrolytic reaction for the preparation of copper powders.The morphology, microstructure and size of copper powders were characterized by scanning electron microscopy,X-ray diffractometry and laser particle analysis.The results indicated that current efficiencies of electrolytic copper powders under super gravity field increased by more than 20% compared with that under normal gravity condition.Cell voltage under super gravity field was also much lower.The size of copper powders decreased with the increase of gravity coefficient(G).The increase of current efficiency can be contributed to the disturbance of electrode/electrolyte interface and enhanced mass transfer of Cu2+ in super gravity field.Meanwhile,the huge gravity acceleration would promote the detachment of copper powders from electrode surface during electrolytic process,which can prevent the growth of copper powders.
基金funded by National Natural Science Foundation of China(No.41674026,41404019,41774089)Fundamental Research Funds for the Central University(No.2652018027)+2 种基金China Geological Survey(DD20191006)Open Research Fund of Qian Xuesen Laboratory of Space Technology,CAST(No.GZZKFJJ2020006)Open Research Fund of Key Laboratory of Space Utilization,Chinese Academy of Sciences(LSU-KFJJ201902)
文摘Although satellite gravity gradient data plays a great role in determining short-wavelength part of static gravity field model,accuracy of the long-wavelength part of gravity field model recovered by them are poor,which leads to only a few applications in time-variable gravity investigation.The reason is that some factors limit the accuracy of the gravity field recovered using gradient data,including accuracy of the gravity gradient observations,measurement bandwidth(MBW)of gradiometer,satellite inclination,etc.This paper aims at analyzing the influence of these limitations on gravity field recovery and discusses the possibility of time-variable gravity field detection by using gravity gradient observations.Firstly,for arbitrary satellite orbit inclination,we give the frequency distributions of all the components of gravity gradients(i.e.Txx;Tyy;Tzz;Txy;Txz and Tyz,).The results show that the maximum frequency of each component of the gravity gradients is the same,i.e.l=Ts(l is degree of the gravity field model,Ts is the orbital periods),and it is not influenced by the inclination of the satellite orbits.Secondly,the paper gives a theory proof to explain why only the low orders of the coefficients are influenced by polar gaps.Big polar gaps are experimented by a numerical test with inclination of 45°.Finally,considering that the measurement bandwidth can be expanded and accuracy of gradient observations can be improved by superconducting gravity gradiometer(SGG)compared to gradiometer used in Gravity field and steadystate Ocean Circulation Explorer(GOCE),the possibility of detecting time-variable gravity using gravity gradient observations is discussed.The results show that the SGG creates errors in MBW with magnitude of 0.014 m E,which is smaller than the magnitude of the time-variable gravity gradient signals(i.e.,0.02 m E)derived from Gravity Recovery and Climate Experiment(GRACE)gravity field models.This indicates the potential of SGG in time-variable gravity detection.
基金the National Natural Science Foundation of China(Nos.41974095,41774090,and U1939205)the Special Fund of the Institute of Geophysics,China Earthquake Administration(Nos.DQJB20X09,and DQJB21R30)The first author acknowledges support from the China Postdoctoral Science Foundation(No.2018M641424)。
文摘The terrestrial time-variable gravity measurements are characterized by a high signal-to-noise ratio and sensitivity to the sources of mass change in the Earth's crust.These gravity data have many applications,such as surface deformation,groundwater storage changes,and mass migration before and after earthquakes.Based on repeated terrestrial gravity measurements at 198 gravity stations in the Sichuan-Yunnan region(SYR)from 2015 to 2017,we determine a time series of degree 120 gravity fields using the localized spherical harmonic(Slepian)basis functions.Our results show that adopting the first 6 Slepian basis functions is sufficient for effective localized Slepian modeling in the SYR.The differences between two gravity campaigns at the same time of year show an obvious correlation with tectonic features.The degree 120 timevariable gravity models presented in this paper will benefit the study of the regional mass migration inside the crust of the SYR and supplement the existing geophysical models for the China Seismic Experimental Site.
基金the National Natural Science Foundation of China(Grant No.42192535)the Open Fund of Wuhan,Gravitation and Solid Earth Tides,National Observation and Research Station(No.WHYWZ202204)+1 种基金the Strategic Pioneer Science and Technology Special Project of the Chinese Academy of Sciences(Grant No.XDB18010304)the National Natural Science Foundation of China(Grant No.41874096).
文摘The Tibetan Plateau(TP)is the youngest orogenic belt resulting from a continental collision on the Earth.It is a natural laboratory for studying continental dynamics,such as continental convergence,plate subduction,and plateau uplift.Investigating the deep structure of the TP has always been a popular issue in geological research.The Moho is the boundary between the crust and the mantle and therefore plays a crucial role in the Earth’s structure.Parameters such as depth and lateral variation,as well as the fine structure of the crust-mantle interface,reveal the lithospheric dynamics in the TP.Two methods are generally employed to study the Moho surface:seismic detection and gravity inversion.Seismic detection has the characteristic of high precision,but it is limited to a few cross-sectional lines and is quite costly.It is not suitable for and cannot be carried out over a large area of the TP.The Moho depth over a large area can be obtained through gravity inversion,but this method is affected by the nature of gravity data,and the accuracy of the inversion method is lower than that of seismic detection.In this work,a high-precision gravity field model was selected.The Parker-Oldenburg interface inversion method was used,within the constraints of seismic observations,and the Bott iteration method was introduced to enhance the inversion efficiency.The Moho depth in the TP was obtained with high precision,consistent with the seismic detection results.The research results showed that the shape of the Moho in the TP is complex and the variation range is large,reaching 60−80 km.In contrast with the adjacent area,a clear zone of sharp variation appears at the edge of the plateau.In the interior of the TP,the buried depth of the Moho is characterized by two depressions and two uplifts.To the south of the Yarlung Zangbo River,the Moho inclines to the north,and to the north,the Moho depresses downward,which was interpreted as the Indian plate subducting to the north below Xizang.The Moho depression on the north side of the Qiangtang block,reaching 72 km deep,may be a result of the southward subduction of the lithosphere.The Moho uplift of the Qiangtang block has the same strike as the Bangong−Nujiang suture zone,which may indicate that the area is compensated by a low-density and low-velocity mantle.
文摘There were 34 times repeated gravity measurements along Beijing, Tianjin, and Tangshan from 1971 to 1981. The gravity field around the Tangshan area continuously increased about 98×10 -8 m·s -2 from 1971~1975. The peaks of the gravity changes occurred in the middle of 1975. Preliminary study of mechanism of the gravity changes before and after the Tangshan earthquake was done with combination of deformation and seismic data in the area. The final results show that the deep boundary surface up lifted with a rate of 2.5 m/a in the Tangshan area from 1971~1975.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars (41404028)
文摘The block-diagonal least squares method, which theoretically has specific requirements for the observation data and the spatial distribution of its precision, plays an important role in ultra-high degree gravity field determination. On the basis of block-diagonal least squares method, three data processing strategies are employed to determine the gravity field models using three kinds of simulated global grid data with different noise spatial distri- bution in this paper. The numerical results show that when we employed the weight matrix corresponding to the noise of the observation data, the model computed by the least squares using the full normal matrix has much higher precision than the one estimated only using the block part of the normal matrix. The model computed by the block-diagonal least squares method without the weight matrix has slightly lower precision than the model computed using the rigorous least squares with the weight matrix. The result offers valuable reference to the using of block-diagonal least squares method in ultra-high gravity model determination.
基金The Scientific and Technological Project of CNOOC Research Institute Co.,Ltd.,under contract No.CCL2021RCPS0167KQN。
文摘The China seas and adjacent areas contain numerous petroleum basins.One of the main challenges for future oil and gas exploration is to identify the inherent patterns of petroleum basin distribution.The formation and evolution of petroleum basins along with the migration and accumulation of oil and gas are often closely related to the tectonic environment.The gravity and magnetic fields with high lateral resolution and wide coverage provide important data for regional tectonic research.Based on the gravity data in the Global Satellite Gravity Anomaly Database(V31.1)and magnetic data from the Earth Magnetic Anomaly Grid(2-arc-minute resolution)(V2),this study uses integrated gravity and magnetic field technique to obtain integrated gravity and magnetic field result for the China seas and adjacent areas,and then adopts the normalized vertical derivative of the total horizontal derivative technique to conduct partition.Finally,it identifies the relationship between the partition characteristics and tectonics as well as the patterns of petroleum basin occurrence.The research shows that the partition of gravity and magnetic field integrated result has a good correlation with the Neo-Cathaysian tectonic system and tectonic units.The petroleum basins are characterized according to three blocks arranged from north to south and four zones arranged from east to west.The north-south block structure causes the uneven distribution of oil and gas resources in the mainland area and the differences in the hydrocarbon-bearing strata.Petroleum basins are more abundant in the north than in the south.The ages of the main oil-and gas-bearing strata are“Paleozoic–Mesozoic,Paleozoic–Mesozoic–Cenozoic,and Paleozoic–Mesozoic”,in order from north to south.The difference in the overall type of oil and gas resources in all basins is controlled by the east–west zonation.From east to west,the oil and gas resource type exhibits a wave-like pattern of“oil and gas,gas,oil and gas,gas”.The vertical distribution is characterized by an upper oil(Mesozoic–Cenozoic)and lower gas(Mesozoic–Paleozoic)structure.Within the study area,the Paleozoic marine strata should be the main strata of future natural gas exploration.
基金supported by National Basic Research Program of China(No.613222)。
文摘With the improvement of the accuracy of the inertial system,the influence of the disturbing gravity field on the accuracy of long-range rocket has become increasingly prominent.However,in actual engineering,there are problems of low accuracy and being time-consuming for disturbing gravity field compensation.In view of this,this paper proposes a set of online comprehensive solutions combining disturbing gravity reconstruction and stellar correction.According to the pre-launch binding parameters,the net function assignment method is used in the navigation system to calculate disturbing gravity in the boost phase online.In the guidance system,a closed-loop guidance online compensation method is proposed based on the state-space perturbation method for the disturbing gravity in the coast phase.At the same time,the vertical deflection can also be corrected by stellar guidance.The calculation results are simulated and verified under different circumstances.Simulation results show that the proposed online compensation algorithm has an accuracy improvement compared with the element compensation algorithm on ground.And the stellar guidance algorithm can further correct the impact deviation.The impact deviation after comprehensive compensation does not exceed 50 m,and the compensation percentage is greater than 65%.
基金supported by the National Natural Science Foundation of China (Nos.41374023,41131067,41474019)the National 973 Project of China (No.2013CB733302)+2 种基金the China Postdoctoral Science Foundation (No.2016M602301)the Key Laboratory of Geospace Envi-ronment and Geodesy,Ministry of Education,Wuhan University (No.15-02-08)the State Scholarship Fund from Chinese Scholarship Council (No.201306270014)
文摘The application of Tikhonov regularization method dealing with the ill-conditioned problems in the regional gravity field modeling by Poisson wavelets is studied. In particular, the choices of the regularization matrices as well as the approaches for estimating the regularization parameters are investigated in details. The numerical results show that the regularized solutions derived from the first-order regularization are better than the ones obtained from zero-order regularization. For cross validation, the optimal regularization parameters are estimated from L-curve, variance component estimation(VCE) and minimum standard deviation(MSTD) approach, respectively, and the results show that the derived regularization parameters from different methods are consistent with each other. Together with the firstorder Tikhonov regularization and VCE method, the optimal network of Poisson wavelets is derived, based on which the local gravimetric geoid is computed. The accuracy of the corresponding gravimetric geoid reaches 1.1 cm in Netherlands, which validates the reliability of using Tikhonov regularization method in tackling the ill-conditioned problem for regional gravity field modeling.
基金Supported by the National Natural Science Foundation of China (No.40574005 No.40304001 +1 种基金 No.40374006 No.40234039) .
文摘Taking the main land of Europe as the region to be studied, the potential of the new satellite gravity technique: satellite-to-satellite tracking (SST) and improving the accuracy of regional gravity field model with the SST models are investigated. The drawbacks of these models are discussed. With GPM98C as the reference, the gravity anomaly residuals of several other models, the latest SST global gravity field models (EIGEN series and GGM series), were computed and compared. The results of the comparison show that in the selected region, some systematic errors with periodical properties exist in the EIGEN and GGM’s S series models in the high degree and order. Some information that was not shown in the classic gravity models is detected in the low and middle degree and order of EIGEN and GGM’s S series models. At last, the effective maximum degrees and orders of SST models are suggested.