Gravity anomalies reflect the geophysical response to subsurface density structures.Traditionally,the terrain density is assumed to be a constant when calculating Bouguer gravity anomaly.But deviations from this assum...Gravity anomalies reflect the geophysical response to subsurface density structures.Traditionally,the terrain density is assumed to be a constant when calculating Bouguer gravity anomaly.But deviations from this assumption may induce high-frequency signals in the Bouguer gravity anomaly.This study introduces a Bayesian method for computing Bouguer gravity anomaly.It incorporates a smoothness prior for the Bouguer gravity anomaly and estimates near-surface density parameters to minimize the Akaike's Bayesian Information Criterion(ABIC)value.The effectiveness of this method is validated through theoretical model tests and calculations on two observed gravity profiles in Yunnan.The results indicate that the Bouguer gravity anomaly profiles estimated using the Bayesian approach need no extra filtering,exhibit correlations with the crustal structure along the profiles,and effectively reveal subsurface crustal density variations.Moreover,the obtained density variations offer insights into the near-surface rock density in different geological periods.Specifically,Cenozoic formations have a density of roughly 2.65–2.90 g·cm^(-3),Mesozoic formations 2.61-2.91 g·cm^(-3),and Paleozoic formations 2.61–2.92 g·cm^(-3).Magmatic rock regions generally show higher density values.Additionally,these estimated densities show a positive correlation with the global VS30 seismic velocity estimates,suggesting a new geophysical approach for seismic site classification.The findings of this study are significantly valuable for near-surface density estimation and Bouguer gravity anomaly calculations.展开更多
Using a gravity anomaly covariance function based on the second-order Ganssian Markov gravity anomaly potential model, the state equation of a gravity anomaly signal is obtained in marine gravimetry. Combined with the...Using a gravity anomaly covariance function based on the second-order Ganssian Markov gravity anomaly potential model, the state equation of a gravity anomaly signal is obtained in marine gravimetry. Combined with the system state equation and the measurement equation, a new method of the cascade Kalman filter is proposed and applied to the correction of gravity anomaly distortion. In the signal processing procedure, an inverse Kalman filter is used to restore the gravity anomaly signal and high frequency noises first. Then an adaptive Kalman filter, which uses the gravity anomaly state equation as the system equation, is set to estimate the actual gravity anomaly data. Emulations and experiments indicate that both the cascade Kalman filter method and the single inverse Kalman filter method are effective in alleviating the distortion of the gravity anomaly signal, but the performance of the cascade Kalman filter method is better than that of the single inverse Kalman filter method.展开更多
Gravity Anomaly Correction(GAC)is a very important term in leveling data processing.In most cases,it is troublesome for field surveyors to measure gravity when leveling.In this paper,based on the complete Bouguer Grav...Gravity Anomaly Correction(GAC)is a very important term in leveling data processing.In most cases,it is troublesome for field surveyors to measure gravity when leveling.In this paper,based on the complete Bouguer Gravity Anomaly(BGA)map of WGM2012,the feasibility of replacing in-situ gravity surveying in China is investigated.For leveling application,that is to evaluate the accuracy of WGM2012 in China.Because WGM2012 is organized with a standard rectangle grid,two interpolation methods,bilinear interpolating and Inverse Distance Weighted(IDW)interpolating,are proposed.Four sample areas in China,i.e.,Hanzhong,Chengdu,Linzhi and Shantou,are selected to evaluate the systems bias and precision of WGM2012.Numerical results show the average system bias of WGM2012 BGA in west China is about-100.1 mGal(1 mGal=10^(-5) m/s^(2))and the standard deviation is about 30.7 mGal.Tests in Shantou indicate the system bias in plain areas is about-130.4 mGal and standard deviation is about 6.8 mGal.All these experiments means the accuracy of WGM2012 is limited in high mountain areas of western China,but in plain areas,such as Shantou,WGM2012 BGA map is quite good for most leveling applications after calibrating the system bias.展开更多
The Sichuan basin is the main part of the middle-upper Yangtze block,which has been experienced a long-term tectonic evolution since Archean.The Yangtze block was regarded as a stable block until the collision with th...The Sichuan basin is the main part of the middle-upper Yangtze block,which has been experienced a long-term tectonic evolution since Archean.The Yangtze block was regarded as a stable block until the collision with the Cathaysia block in late Neoproterozoic.A new deep seismic reflection profile conducted in the eastern Sichuan fold belt(ESFB)discovered a serials of south-dipping reflectors shown from lower crust to the mantle imply a frozen subduction zone within the Yangtze block.In order to prove the speculation,we also obtain the middle-lower crustal gravity anomalies by removing the gravity anomalies induced by the sedimentary rocks and the mantle beneath the Moho,which shows the mid-lower crustal structure of the Sichuan basin can be divided into eastern and western parts.Combined with the geochronology and Aeromagnetic anomalies,we speculated the Yangtze block was amalgamated by the West Sichuan and East Sichuan blocks separated by the Huayin-Chongqing line.The frozen subduction zone subsequently shifted to a shear zone accommodated the lower crustal shortening when the decollement at the base of the Nanhua system functioned in the upper plate.展开更多
We present an estimation of depth of anomalous bodies using normalized full gradient (NFG) of gravity anomaly. Maxima in the NFG map can locate the bodies and indicate their depth. Model calculation using a sphere a...We present an estimation of depth of anomalous bodies using normalized full gradient (NFG) of gravity anomaly. Maxima in the NFG map can locate the bodies and indicate their depth. Model calculation using a sphere and application of the NFG method to gravity anomalies over salt domes in the USA and Denmark shows effectiveness of the method. However, the accuracy of depth estimation strongly depends on the number of term N in the Fourier series used to calculate the NFG. An optimum N for the calculation can be given from a test.展开更多
The first through ninth radial derivatives of a harmonic function and gravity anomaly are derived in this paper. These derivatives can be used in the analytical continuation application. For the downward continuation ...The first through ninth radial derivatives of a harmonic function and gravity anomaly are derived in this paper. These derivatives can be used in the analytical continuation application. For the downward continuation of gravity anomaly, the Taylor series approach developed in the paper is equivalent theoretically to but more efficient and storage-saving computationally than the well-known gradient operator approach. Numerical simulation shows that Taylor series expansion constructed by the derived formulas for the radial derivatives of gravity disturbance is still convergent for height up to 4 km.展开更多
Calculated Bouguer gravity anomalies from the Andean orogenic belt interpreted as derived from regional gravity data to aid understanding of the lithospheric structure and tectonic evolution of the belt.These anomalie...Calculated Bouguer gravity anomalies from the Andean orogenic belt interpreted as derived from regional gravity data to aid understanding of the lithospheric structure and tectonic evolution of the belt.These anomalies reveal lithospheric structures distributed throughout the belt,including linear and circular structures.NE-trending structures reflect sinistral transpression across the northern part of the belt,and NW-trending structures represent dextral transtension in the southern part.These results are supported by gravity-anomaly patterns that demonstrate mantle flow in a trench-parallel direction both northward and southward away from the stagnation band that is beneath the subducting Nazca slab.This mantle flow has served as an important driving force in the evolution of the Andean orogenic belt.Features of the modified tectonic model of the Andean orogenic belt are consistent with the spatial variation in and interpretation of Bouguer gravity anomalies.展开更多
The forward calculation of gravity anomalies is a non-negligible aspect contributing to the time consumption of the entire process of basement relief estimation.In this study,we develop a fast hybrid computing scheme ...The forward calculation of gravity anomalies is a non-negligible aspect contributing to the time consumption of the entire process of basement relief estimation.In this study,we develop a fast hybrid computing scheme to compute the gravity anomaly of a basement.We use the vertical prism source equation in a given region R centered at a certain gravity observation point and the vertical line source equation outside R to derive the gravity anomaly.We observe that the computation with the vertical line source equation is much faster than that of the vertical prism source equation,but the former is slightly inaccurate.Therefore,our method is highly effi cient and able to avoid the errors caused by the low accuracy of the vertical line source equation near the observation point.We then derive the general principle of choosing the size of R via a series of prism model tests.Our tests on the gravity anomaly over the Los Angeles Basin confirm the correctness of our proposed forward strategy.We modify Bott’s method with an accelerating factor to expedite the inversion procedure and presume that the density contrast between the sediments and the basement in a sedimentary basin varies laterally and can be obtained using the equivalent equation.Synthetic data and real data applications in the Weihe Basin illustrate that our proposed method can accurately and effi ciently estimate the basement relief of sedimentary basins.展开更多
The eastern Tibetan plateau has been getting more and more attention because it combines active faults,uplifting, and large earthquakes together in a high-population region. Based on the previous researches, the most ...The eastern Tibetan plateau has been getting more and more attention because it combines active faults,uplifting, and large earthquakes together in a high-population region. Based on the previous researches, the most of Cenozoic tectonic activities were related to the regional structure of the local blocks within the crustal scale. Thus,a better understanding of the crustal structure of the regional tectonic blocks is an important topic for further study. In this paper, we combined the simple Bouguer gravity anomaly with the Moho depths from previous studies to investigate the crustal structure in this area. To highlight the crustal structures, the gravity anomaly caused by the Moho relief has been reduced by forward modeling calculations. A total horizontal derivative(THD) had been applied on the gravity residuals. The results indicated that the crustal gravity residual is compatible with the topography and the geological settings of the regional blocks,including the Sichuan basin, the Chuxiong basin, the Xiaojiang fault, and the Jinhe fault, as well as the Longmenshan fault zone. The THD emphasized the west margin of Yangtze block, i.e., the Longriba fault zone and the Xiaojiang fault cut through the Yangtze block. The checkboard pattern of the gravity residual in the SongpanGarze fold belt and Chuandian fragment shows that the crust is undergoing a southward and SE-directed extrusion,which is coincident with the flowing direction indicatedfrom the GPS measurements. By integrating the interpretations, the stepwise extensional mechanism of the eastern Tibetan plateau is supported by the southeastward crustal deformation, and the extrusion of Chuandian fragment is achieved by Xianshuihe fault.展开更多
We have derived and tested several relations between geoid (N) and quasi-geoid (~) with model validation. The elevation correction consists of the first-term (Bouguer anomaly) and second-term (vertical gradient...We have derived and tested several relations between geoid (N) and quasi-geoid (~) with model validation. The elevation correction consists of the first-term (Bouguer anomaly) and second-term (vertical gradient of gravity anomaly). The vertical gradient was obtained from direct measurement and terrain calcula- tion. The test results demonstrated that the precision of geoid can reach centimeter-level in mountains less than 5000 meters high.展开更多
A very fast simulated annealing(VFSA) global optimization is used to interpret residual gravity anomaly.Since,VFSA optimization yields a large number of best-fitted models in a vast model space;the nature of uncerta...A very fast simulated annealing(VFSA) global optimization is used to interpret residual gravity anomaly.Since,VFSA optimization yields a large number of best-fitted models in a vast model space;the nature of uncertainty in the interpretation is also examined simultaneously in the present study.The results of VFSA optimization reveal that various parameters show a number of equivalent solutions when shape of the target body is not known and shape factor 'q' is also optimized together with other model parameters.The study reveals that amplitude coefficient k is strongly dependent on shape factor.This shows that there is a multi-model type uncertainty between these two model parameters derived from the analysis of cross-plots.However,the appraised values of shape factor from various VFSA runs clearly indicate whether the subsurface structure is sphere,horizontal or vertical cylinder type structure.Accordingly,the exact shape factor(1.5 for sphere,1.0 for horizontal cylinder and 0.5 for vertical cylinder)is fixed and optimization process is repeated.After fixing the shape factor,analysis of uncertainty and cross-plots shows a well-defined uni-model characteristic.The mean model computed after fixing the shape factor gives the utmost consistent results.Inversion of noise-free and noisy synthetic data as well as field data demonstrates the efficacy of the approach.展开更多
The identification of fractures is of great importance in gravity and magnetic data processing and interpretation.In this study,four fracture identification methods are applied,and widely used in processing and analys...The identification of fractures is of great importance in gravity and magnetic data processing and interpretation.In this study,four fracture identification methods are applied,and widely used in processing and analysis of the gravity anomaly,including vertical second derivative method,tilt derivative method,theta map method and normalized differential method,for gravity data acquired in a given area in Heilongjiang.By comparing the distribution of the zero contour or maximum contour,we summarize the application effects,and both advantages and disadvantages of each method.It is found that tilt derivative method and normalized differential method provide better effects than other two methods:the narrower anomaly gradient belt and higher identification precision of fracture or geological boundary.The inferred fractures and geological boundaries have a great match with the results obtained from geologic map and remote sensing data interpretation.Those study results have definitely provided the theoretical foundation for identifying faults and the geological boundaries.展开更多
This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical chara...This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (Gh) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the Gh contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of Gh, a belt about 10 km wide that extends to about 30 km; (3) Yinchuan- Pingluo fault (FS) is the seismogenic structure of the Pin- gluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly vari- ation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.展开更多
Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau.However,crust-mantle evolution and crustal response to the Indian li...Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau.However,crust-mantle evolution and crustal response to the Indian lithospheric subduction are still controversial.Answering these questions requires additional information regarding crustal structure.In this study,the 2-D normalized full gradient(NFG)of the Bouguer gravity anomaly was used to investigate anomalous sources and interpret the crustal structure underneath the Qiangtang and Songpan-Ganzi terranes.The NFG-derived structures with loworder harmonic numbers(N=33 and N=43)showed that an anomalous source beneath the southern Qiangtang terrane had a characteristic northeastward-dipping shape,suggesting the northeastward motion of the crustal material induced by underthrusting Indian lithospheric mantle.The NFG images with harmonic number N=53 showed a large-scale anomalous source in the lower crust of the transformational zone from the Qiangtang terrane to the Songpan-Ganzi terrane,consistent with thickening crust and resistance of lower crustal flow.The anomalous source demonstrated by the NFG results with harmonic number N=71,located in the upper crust underneath the Ganzi-Yushu fault,suggested a seismogenic body of the 2010 M6.9 Yushu event.展开更多
Sichuan-Yunnan region in China, a tectonic transition belt where earthquakes occurred frequently and intensely, has a distinct variation characteristic of gradient zone of Bouguer gravity anomaly (BGA). Many deep fa...Sichuan-Yunnan region in China, a tectonic transition belt where earthquakes occurred frequently and intensely, has a distinct variation characteristic of gradient zone of Bouguer gravity anomaly (BGA). Many deep faults and epicenters of severe earthquake scatter along the BGA gradient zones. Here we apply two forward models (Airy model and Vening Meinesz model) of isostatic gravity mechanisms (local versus regional) in this region to calculated the isostatic gravity anomaly (IGA). Afterwards, the relationship between IGA and distribution of faults as well as seismicity is also illustrated. The IGA results show that the two models are similar and most parts of the study area are in an isostatic state. Most featured faults are distributed along the steep anomaly gradient zones; earthquakes tend to occur in the non-isostatic area and steep gradient belt of IGA. The distribution of root thickness based on regional mechanism can be associated with the main trend of BGA variation. The regional mechanism is more plausible and closer to the reality because of its relatively further consideration of the horizontal forces derived from adjacent particles in the crust. Then we analyze the effect of isostasy on the tectonic movements and find that the isostatic adjustment is not the main cause of the continuous uplift process of Longmenshan Mountain fault zone. which is due to the Indian-Eurasian continental collision.展开更多
The use of gravity data has demonstrated capability for monitoring lithological changes on a large scale as a consequence of differentiating basement and sedimentary of buried valleys. Gravity anomalies are associated...The use of gravity data has demonstrated capability for monitoring lithological changes on a large scale as a consequence of differentiating basement and sedimentary of buried valleys. Gravity anomalies are associated with lateral contrasts in density and therefore deformation by faulting or folding will be manifested if accompanied by lateral density changes, otherwise, the vice versa is true. The study’s objective is to evaluate the effectiveness of gravity method in establishing different lithologies in an area. The study has revealed that regional anomaly gravity map presents high anomalies in the Northern region in the NW-SE trend and low anomalies in the southern trend in NW-SE, while the residual anomaly gravity map shows different trends for the low and high gravity anomalies. The gravity anomalies are well interpreted in line with the lithologies of the study area rather than the deformation of the same lithologies. There are observed high values of gravity anomaly values (ranging from -880.2 to -501.2 g.u.) where there are eolian unconsolidated rocks overlying the basement compared to low gravity anomaly values (ranging from -1338.9 to -1088.7 g.u.) where the andesites, trachytes and phonolites overly the basement. The different regional gravity anomalies relate well with different rock densities in the study area along the line profile for radially averaged power spectrum. The gravity highs are noted in the eastern point and are associated with andesites, trachytes, basalts and igneous rocks, while the gravity lows are associated with sandstone, greywacke, arkose, and eolian unconsolidated rock. The utilization of the information from the Power spectrum analysis demonstrates that the depth to the deepest basement rock is 12.8 km which is in the eastern flank, while the shallowest to the basement of 1.1 km to the western flank.展开更多
In this paper, the lithospheric isostatic gravity anomaly with its distribution features in the Central Asian region (30°~70°N, 50°~140°E), according to the research of the lithospheric isostati...In this paper, the lithospheric isostatic gravity anomaly with its distribution features in the Central Asian region (30°~70°N, 50°~140°E), according to the research of the lithospheric isostatic principle, is discussed. Moreover, some primary structures and seismic activities in this region are discussed.展开更多
An effective method of random approach of gravity anomaly is collocation. To improve the reliability of collocation root, it is crucial to improve the reliability of covariance function of gravity anomaly. In thi...An effective method of random approach of gravity anomaly is collocation. To improve the reliability of collocation root, it is crucial to improve the reliability of covariance function of gravity anomaly. In this paper, a set of theoretical models of iterative fitting covariance function and predicting gravity anomaly is established. Through practical calculation, it shows that after finite iterative collocating, they do work well.展开更多
We study the P V critical behavior of a four-dimensional AdS black hole in an Einstein Maxwell gravity with a conformal anomaly by treating the cosmological constant as a variable that is related to the thermodynamic ...We study the P V critical behavior of a four-dimensional AdS black hole in an Einstein Maxwell gravity with a conformal anomaly by treating the cosmological constant as a variable that is related to the thermodynamic pressure, It is shown that there will be no phase transition if k = 0 or -1 are taken. When the charge ql of the conformal field and the coefficient α satisfy a certain relation, the van de Waals like phase transition for the spherical black hole can occur where the temperature is lower than the small critical temperature or higher than the large one. We also evaluate the critical exponents of the phase transitions and find that the thermodynamic exponents associated with this four-dimensional AdS black hole coincide with those of the van de Waals fluid.展开更多
We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are...We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are contaminated by noise. Gravity gradient tensors computation on 2D infinite horizontal cylinder and 3D "Y" type dyke models show that the results computed with the DCT technique are more accurate than the FFT technique regardless if the gravity anomalies are contaminated by noise or not. The DCT precision has increased 2 to 3 times from the standard deviation. In application, the gravity gradient tensors of the Hulin basin calculated by DCT and FFT show that the two results are consistent with each other. However, the DCT results are smoother than results computed with FFT. This shows that the proposed method is less affected by noise and can better reflect the fault distribution.展开更多
基金supported by the National Key Research and Development Program of China(2023YFE0101800)the National Natural Science Foundation of China(Young Scientists Fund,42450233,General Program,42474120)+3 种基金the Basic Scientific Research Fund Special Project of the Institute of Geophysics,China Earthquake Administration(DQJB24B20)the Natural Science Foundation of Beijing(Grant No.1242033)the Natural Science Foundation of Tianjin(25JCQNJC00540)the National Science and Technology Major Project for Deep Earth Probe and Mineral Resources Exploration(2024ZD1002700).
文摘Gravity anomalies reflect the geophysical response to subsurface density structures.Traditionally,the terrain density is assumed to be a constant when calculating Bouguer gravity anomaly.But deviations from this assumption may induce high-frequency signals in the Bouguer gravity anomaly.This study introduces a Bayesian method for computing Bouguer gravity anomaly.It incorporates a smoothness prior for the Bouguer gravity anomaly and estimates near-surface density parameters to minimize the Akaike's Bayesian Information Criterion(ABIC)value.The effectiveness of this method is validated through theoretical model tests and calculations on two observed gravity profiles in Yunnan.The results indicate that the Bouguer gravity anomaly profiles estimated using the Bayesian approach need no extra filtering,exhibit correlations with the crustal structure along the profiles,and effectively reveal subsurface crustal density variations.Moreover,the obtained density variations offer insights into the near-surface rock density in different geological periods.Specifically,Cenozoic formations have a density of roughly 2.65–2.90 g·cm^(-3),Mesozoic formations 2.61-2.91 g·cm^(-3),and Paleozoic formations 2.61–2.92 g·cm^(-3).Magmatic rock regions generally show higher density values.Additionally,these estimated densities show a positive correlation with the global VS30 seismic velocity estimates,suggesting a new geophysical approach for seismic site classification.The findings of this study are significantly valuable for near-surface density estimation and Bouguer gravity anomaly calculations.
基金Pre-Research Program of General Armament Departmentduring the 11th Five-Year Plan Period(No.51309010201)the National Natural Science Foundation of China(No.60575010)
文摘Using a gravity anomaly covariance function based on the second-order Ganssian Markov gravity anomaly potential model, the state equation of a gravity anomaly signal is obtained in marine gravimetry. Combined with the system state equation and the measurement equation, a new method of the cascade Kalman filter is proposed and applied to the correction of gravity anomaly distortion. In the signal processing procedure, an inverse Kalman filter is used to restore the gravity anomaly signal and high frequency noises first. Then an adaptive Kalman filter, which uses the gravity anomaly state equation as the system equation, is set to estimate the actual gravity anomaly data. Emulations and experiments indicate that both the cascade Kalman filter method and the single inverse Kalman filter method are effective in alleviating the distortion of the gravity anomaly signal, but the performance of the cascade Kalman filter method is better than that of the single inverse Kalman filter method.
基金“Wings of Quality”Program of QICS(No.2020-zlzy-015)。
文摘Gravity Anomaly Correction(GAC)is a very important term in leveling data processing.In most cases,it is troublesome for field surveyors to measure gravity when leveling.In this paper,based on the complete Bouguer Gravity Anomaly(BGA)map of WGM2012,the feasibility of replacing in-situ gravity surveying in China is investigated.For leveling application,that is to evaluate the accuracy of WGM2012 in China.Because WGM2012 is organized with a standard rectangle grid,two interpolation methods,bilinear interpolating and Inverse Distance Weighted(IDW)interpolating,are proposed.Four sample areas in China,i.e.,Hanzhong,Chengdu,Linzhi and Shantou,are selected to evaluate the systems bias and precision of WGM2012.Numerical results show the average system bias of WGM2012 BGA in west China is about-100.1 mGal(1 mGal=10^(-5) m/s^(2))and the standard deviation is about 30.7 mGal.Tests in Shantou indicate the system bias in plain areas is about-130.4 mGal and standard deviation is about 6.8 mGal.All these experiments means the accuracy of WGM2012 is limited in high mountain areas of western China,but in plain areas,such as Shantou,WGM2012 BGA map is quite good for most leveling applications after calibrating the system bias.
基金the National Natural Science Foundation of China(Nos.41104056,41374093,40974060,41574093)basic scientific research fund of IG,CAGS(J1119)
文摘The Sichuan basin is the main part of the middle-upper Yangtze block,which has been experienced a long-term tectonic evolution since Archean.The Yangtze block was regarded as a stable block until the collision with the Cathaysia block in late Neoproterozoic.A new deep seismic reflection profile conducted in the eastern Sichuan fold belt(ESFB)discovered a serials of south-dipping reflectors shown from lower crust to the mantle imply a frozen subduction zone within the Yangtze block.In order to prove the speculation,we also obtain the middle-lower crustal gravity anomalies by removing the gravity anomalies induced by the sedimentary rocks and the mantle beneath the Moho,which shows the mid-lower crustal structure of the Sichuan basin can be divided into eastern and western parts.Combined with the geochronology and Aeromagnetic anomalies,we speculated the Yangtze block was amalgamated by the West Sichuan and East Sichuan blocks separated by the Huayin-Chongqing line.The frozen subduction zone subsequently shifted to a shear zone accommodated the lower crustal shortening when the decollement at the base of the Nanhua system functioned in the upper plate.
基金supported by the Ministry of Science,Researches and Technology,Iran
文摘We present an estimation of depth of anomalous bodies using normalized full gradient (NFG) of gravity anomaly. Maxima in the NFG map can locate the bodies and indicate their depth. Model calculation using a sphere and application of the NFG method to gravity anomalies over salt domes in the USA and Denmark shows effectiveness of the method. However, the accuracy of depth estimation strongly depends on the number of term N in the Fourier series used to calculate the NFG. An optimum N for the calculation can be given from a test.
文摘The first through ninth radial derivatives of a harmonic function and gravity anomaly are derived in this paper. These derivatives can be used in the analytical continuation application. For the downward continuation of gravity anomaly, the Taylor series approach developed in the paper is equivalent theoretically to but more efficient and storage-saving computationally than the well-known gradient operator approach. Numerical simulation shows that Taylor series expansion constructed by the derived formulas for the radial derivatives of gravity disturbance is still convergent for height up to 4 km.
基金jointly funded by the Ministry of Science and Technology of the People’s Republic of China (Grant No. 2019YFA0708601-02)the National Natural Science Foundation of China (Grant Nos. 41404070 and 41374101)the China Geological Survey (Grant Nos. DD20201116, DD20190448, DD20221647, DD20221649 and DD201609-05)
文摘Calculated Bouguer gravity anomalies from the Andean orogenic belt interpreted as derived from regional gravity data to aid understanding of the lithospheric structure and tectonic evolution of the belt.These anomalies reveal lithospheric structures distributed throughout the belt,including linear and circular structures.NE-trending structures reflect sinistral transpression across the northern part of the belt,and NW-trending structures represent dextral transtension in the southern part.These results are supported by gravity-anomaly patterns that demonstrate mantle flow in a trench-parallel direction both northward and southward away from the stagnation band that is beneath the subducting Nazca slab.This mantle flow has served as an important driving force in the evolution of the Andean orogenic belt.Features of the modified tectonic model of the Andean orogenic belt are consistent with the spatial variation in and interpretation of Bouguer gravity anomalies.
基金supported by the National Natural Science Foundation of China(41904115)。
文摘The forward calculation of gravity anomalies is a non-negligible aspect contributing to the time consumption of the entire process of basement relief estimation.In this study,we develop a fast hybrid computing scheme to compute the gravity anomaly of a basement.We use the vertical prism source equation in a given region R centered at a certain gravity observation point and the vertical line source equation outside R to derive the gravity anomaly.We observe that the computation with the vertical line source equation is much faster than that of the vertical prism source equation,but the former is slightly inaccurate.Therefore,our method is highly effi cient and able to avoid the errors caused by the low accuracy of the vertical line source equation near the observation point.We then derive the general principle of choosing the size of R via a series of prism model tests.Our tests on the gravity anomaly over the Los Angeles Basin confirm the correctness of our proposed forward strategy.We modify Bott’s method with an accelerating factor to expedite the inversion procedure and presume that the density contrast between the sediments and the basement in a sedimentary basin varies laterally and can be obtained using the equivalent equation.Synthetic data and real data applications in the Weihe Basin illustrate that our proposed method can accurately and effi ciently estimate the basement relief of sedimentary basins.
基金supported by the National Natural Science Foundation of China (Grant Nos.41430213 and 41304064)
文摘The eastern Tibetan plateau has been getting more and more attention because it combines active faults,uplifting, and large earthquakes together in a high-population region. Based on the previous researches, the most of Cenozoic tectonic activities were related to the regional structure of the local blocks within the crustal scale. Thus,a better understanding of the crustal structure of the regional tectonic blocks is an important topic for further study. In this paper, we combined the simple Bouguer gravity anomaly with the Moho depths from previous studies to investigate the crustal structure in this area. To highlight the crustal structures, the gravity anomaly caused by the Moho relief has been reduced by forward modeling calculations. A total horizontal derivative(THD) had been applied on the gravity residuals. The results indicated that the crustal gravity residual is compatible with the topography and the geological settings of the regional blocks,including the Sichuan basin, the Chuxiong basin, the Xiaojiang fault, and the Jinhe fault, as well as the Longmenshan fault zone. The THD emphasized the west margin of Yangtze block, i.e., the Longriba fault zone and the Xiaojiang fault cut through the Yangtze block. The checkboard pattern of the gravity residual in the SongpanGarze fold belt and Chuandian fragment shows that the crust is undergoing a southward and SE-directed extrusion,which is coincident with the flowing direction indicatedfrom the GPS measurements. By integrating the interpretations, the stepwise extensional mechanism of the eastern Tibetan plateau is supported by the southeastward crustal deformation, and the extrusion of Chuandian fragment is achieved by Xianshuihe fault.
文摘We have derived and tested several relations between geoid (N) and quasi-geoid (~) with model validation. The elevation correction consists of the first-term (Bouguer anomaly) and second-term (vertical gradient of gravity anomaly). The vertical gradient was obtained from direct measurement and terrain calcula- tion. The test results demonstrated that the precision of geoid can reach centimeter-level in mountains less than 5000 meters high.
文摘A very fast simulated annealing(VFSA) global optimization is used to interpret residual gravity anomaly.Since,VFSA optimization yields a large number of best-fitted models in a vast model space;the nature of uncertainty in the interpretation is also examined simultaneously in the present study.The results of VFSA optimization reveal that various parameters show a number of equivalent solutions when shape of the target body is not known and shape factor 'q' is also optimized together with other model parameters.The study reveals that amplitude coefficient k is strongly dependent on shape factor.This shows that there is a multi-model type uncertainty between these two model parameters derived from the analysis of cross-plots.However,the appraised values of shape factor from various VFSA runs clearly indicate whether the subsurface structure is sphere,horizontal or vertical cylinder type structure.Accordingly,the exact shape factor(1.5 for sphere,1.0 for horizontal cylinder and 0.5 for vertical cylinder)is fixed and optimization process is repeated.After fixing the shape factor,analysis of uncertainty and cross-plots shows a well-defined uni-model characteristic.The mean model computed after fixing the shape factor gives the utmost consistent results.Inversion of noise-free and noisy synthetic data as well as field data demonstrates the efficacy of the approach.
文摘The identification of fractures is of great importance in gravity and magnetic data processing and interpretation.In this study,four fracture identification methods are applied,and widely used in processing and analysis of the gravity anomaly,including vertical second derivative method,tilt derivative method,theta map method and normalized differential method,for gravity data acquired in a given area in Heilongjiang.By comparing the distribution of the zero contour or maximum contour,we summarize the application effects,and both advantages and disadvantages of each method.It is found that tilt derivative method and normalized differential method provide better effects than other two methods:the narrower anomaly gradient belt and higher identification precision of fracture or geological boundary.The inferred fractures and geological boundaries have a great match with the results obtained from geologic map and remote sensing data interpretation.Those study results have definitely provided the theoretical foundation for identifying faults and the geological boundaries.
基金supported by the Key Projects of China Seismic Array(201308011)Earthquake Science(201508006)the China Earthquake Administration,Institute of Seismology Foundation(201326126)
文摘This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (Gh) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the Gh contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of Gh, a belt about 10 km wide that extends to about 30 km; (3) Yinchuan- Pingluo fault (FS) is the seismogenic structure of the Pin- gluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly vari- ation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.
基金financially supported by the National Natural Science Foundation of China(Grant No.42074090)
文摘Numerous geophysical studies have revealed the lithospheric structure of the Qiangtang and the Songpan-Ganzi terranes in the eastern Tibetan Plateau.However,crust-mantle evolution and crustal response to the Indian lithospheric subduction are still controversial.Answering these questions requires additional information regarding crustal structure.In this study,the 2-D normalized full gradient(NFG)of the Bouguer gravity anomaly was used to investigate anomalous sources and interpret the crustal structure underneath the Qiangtang and Songpan-Ganzi terranes.The NFG-derived structures with loworder harmonic numbers(N=33 and N=43)showed that an anomalous source beneath the southern Qiangtang terrane had a characteristic northeastward-dipping shape,suggesting the northeastward motion of the crustal material induced by underthrusting Indian lithospheric mantle.The NFG images with harmonic number N=53 showed a large-scale anomalous source in the lower crust of the transformational zone from the Qiangtang terrane to the Songpan-Ganzi terrane,consistent with thickening crust and resistance of lower crustal flow.The anomalous source demonstrated by the NFG results with harmonic number N=71,located in the upper crust underneath the Ganzi-Yushu fault,suggested a seismogenic body of the 2010 M6.9 Yushu event.
基金supported by the China Earthquake Administration,Institute of Seismology Foundation(IS201416141)Spark Plan(XH17022)
文摘Sichuan-Yunnan region in China, a tectonic transition belt where earthquakes occurred frequently and intensely, has a distinct variation characteristic of gradient zone of Bouguer gravity anomaly (BGA). Many deep faults and epicenters of severe earthquake scatter along the BGA gradient zones. Here we apply two forward models (Airy model and Vening Meinesz model) of isostatic gravity mechanisms (local versus regional) in this region to calculated the isostatic gravity anomaly (IGA). Afterwards, the relationship between IGA and distribution of faults as well as seismicity is also illustrated. The IGA results show that the two models are similar and most parts of the study area are in an isostatic state. Most featured faults are distributed along the steep anomaly gradient zones; earthquakes tend to occur in the non-isostatic area and steep gradient belt of IGA. The distribution of root thickness based on regional mechanism can be associated with the main trend of BGA variation. The regional mechanism is more plausible and closer to the reality because of its relatively further consideration of the horizontal forces derived from adjacent particles in the crust. Then we analyze the effect of isostasy on the tectonic movements and find that the isostatic adjustment is not the main cause of the continuous uplift process of Longmenshan Mountain fault zone. which is due to the Indian-Eurasian continental collision.
文摘The use of gravity data has demonstrated capability for monitoring lithological changes on a large scale as a consequence of differentiating basement and sedimentary of buried valleys. Gravity anomalies are associated with lateral contrasts in density and therefore deformation by faulting or folding will be manifested if accompanied by lateral density changes, otherwise, the vice versa is true. The study’s objective is to evaluate the effectiveness of gravity method in establishing different lithologies in an area. The study has revealed that regional anomaly gravity map presents high anomalies in the Northern region in the NW-SE trend and low anomalies in the southern trend in NW-SE, while the residual anomaly gravity map shows different trends for the low and high gravity anomalies. The gravity anomalies are well interpreted in line with the lithologies of the study area rather than the deformation of the same lithologies. There are observed high values of gravity anomaly values (ranging from -880.2 to -501.2 g.u.) where there are eolian unconsolidated rocks overlying the basement compared to low gravity anomaly values (ranging from -1338.9 to -1088.7 g.u.) where the andesites, trachytes and phonolites overly the basement. The different regional gravity anomalies relate well with different rock densities in the study area along the line profile for radially averaged power spectrum. The gravity highs are noted in the eastern point and are associated with andesites, trachytes, basalts and igneous rocks, while the gravity lows are associated with sandstone, greywacke, arkose, and eolian unconsolidated rock. The utilization of the information from the Power spectrum analysis demonstrates that the depth to the deepest basement rock is 12.8 km which is in the eastern flank, while the shallowest to the basement of 1.1 km to the western flank.
文摘In this paper, the lithospheric isostatic gravity anomaly with its distribution features in the Central Asian region (30°~70°N, 50°~140°E), according to the research of the lithospheric isostatic principle, is discussed. Moreover, some primary structures and seismic activities in this region are discussed.
文摘An effective method of random approach of gravity anomaly is collocation. To improve the reliability of collocation root, it is crucial to improve the reliability of covariance function of gravity anomaly. In this paper, a set of theoretical models of iterative fitting covariance function and predicting gravity anomaly is established. Through practical calculation, it shows that after finite iterative collocating, they do work well.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11275099 and 11475135
文摘We study the P V critical behavior of a four-dimensional AdS black hole in an Einstein Maxwell gravity with a conformal anomaly by treating the cosmological constant as a variable that is related to the thermodynamic pressure, It is shown that there will be no phase transition if k = 0 or -1 are taken. When the charge ql of the conformal field and the coefficient α satisfy a certain relation, the van de Waals like phase transition for the spherical black hole can occur where the temperature is lower than the small critical temperature or higher than the large one. We also evaluate the critical exponents of the phase transitions and find that the thermodynamic exponents associated with this four-dimensional AdS black hole coincide with those of the van de Waals fluid.
基金supported by the Scientific Research Starting Foundation of HoHai University,China(2084/40801136)the Fundamental Research Funds for the Central Universities(No.2009B12514)
文摘We present a method to calculate the full gravity gradient tensors from pre-existing vertical gravity data using the cosine transform technique and discuss the calculated tensor accuracy when the gravity anomalies are contaminated by noise. Gravity gradient tensors computation on 2D infinite horizontal cylinder and 3D "Y" type dyke models show that the results computed with the DCT technique are more accurate than the FFT technique regardless if the gravity anomalies are contaminated by noise or not. The DCT precision has increased 2 to 3 times from the standard deviation. In application, the gravity gradient tensors of the Hulin basin calculated by DCT and FFT show that the two results are consistent with each other. However, the DCT results are smoother than results computed with FFT. This shows that the proposed method is less affected by noise and can better reflect the fault distribution.