The compressive strength of the pellets is a key indicator that determines the production efficiency in straight grate.It usually relies on manual sampling and testing,which is cumbersome and inefficient.To address th...The compressive strength of the pellets is a key indicator that determines the production efficiency in straight grate.It usually relies on manual sampling and testing,which is cumbersome and inefficient.To address this,a time series prediction model for pellet compressive strength was developed,combining a gradient boosting decision tree with a temporal convolutional network(GBDT-TCN).Firstly,the key physical characteristics of the pellet production process were established through the feature construction method,and then the multicollinear features were eliminated based on the Spearman correlation coefficient.The final selection of feature parameters,amounting to 9,was determined using recursive feature elimination(RFE)method.Finally,the GBDT algorithm was used to establish the nonlinear relationship between these features and the compressive strength.The GBDT prediction results and process data were constructed into a time series dataset,which was input into the TCN unit cascade model.The time series information was captured through the distribution coefficient of the loss function in the time series.Results illustrate that the GBDT-TCN method proposed performs well in the task of predicting the compressive strength of pellets.Compared with the prediction model using only GBDT,the accuracy within±100 N is increased from 83.33%to 90.00%.展开更多
Controlling the adhesion of potentially corrosive substances from flue gas on grate bar is crucial for extending the operational lifespan of the equipment.The adhesive behaviour and mechanism of ultrafine particulate ...Controlling the adhesion of potentially corrosive substances from flue gas on grate bar is crucial for extending the operational lifespan of the equipment.The adhesive behaviour and mechanism of ultrafine particulate matters(UPM)throughout the sintering process were elucidated,and measures to control adhesion on grate bars were developed.Research findings indicated that a small quantity of UPM were found on grate bar during the initial sintering stages(ignition stage and middle stageⅠandⅡ).The main compositions of UPM were FexOy-rich,CaO-rich,and aluminium silicate-rich particles.In contrast,corrosive substances like alkali metal compounds were almost absent.These UPM adhered onto grate bar primarily through inertial impaction.When moving to the final sintering stages(middle stageⅢand temperature rising stage),many UPM rich in corrosive substances like NaCl and KCl adhered to the grate bar.These UPM adhered to grate bar through thermal diffusion and vortex deposition.Solid waste water washing technology can greatly decrease the quantity of UPM(rich in NaCl and KCl)on the grate bar due to vortex deposition and thermal diffusion,and it represents a potentially promising way to control adhesion and corrosion on grate bars.展开更多
The implementation of embedded selective catalytic reduction(SCR)denitration in chain grate during iron ore pelletizing process obviates additional flue gas heating.However,the influence of gas components and alkali m...The implementation of embedded selective catalytic reduction(SCR)denitration in chain grate during iron ore pelletizing process obviates additional flue gas heating.However,the influence of gas components and alkali metal on SCR denitration requires attention.The SCR denitration behavior in the preheating section of chain grate was investigated,and the combined influence mechanisms of H_(2)O(g),SO_(2),and potassium were revealed.The results show that the presence of H_(2)O(g)and SO_(2) in the flue gas decreases the NO conversion rate of the catalyst from 96.3%to 79.5%,while potassium adsorbed on the catalyst surface further reduces the NO conversion rate to 74.1%.H_(2)O(g),SO_(2),and potassium in the flue gas form sulfate and potassium salt on the catalyst surface,blocking the pore structure,thereby decreasing the gas adsorption capacity of the catalyst.Moreover,SO_(2) and potassium engage in competitive adsorption and reaction with NH_(3) and NO at the active sites on the catalyst surface,reducing the content and activity of the catalyst effective component.Increasing the flue gas temperature can promote the decomposition of ammonium sulfate and ammonium bisulfate on the catalyst surface,but it has little effect on potassium.Additionally,potassium will exacerbate sulfur poisoning of the catalyst.Hence,the embedded SCR denitration process requires electrostatic precipitation to eliminate the adverse impacts of potassium and thermal regime optimization to raise flue gas temperature to 350℃,thereby increasing NO conversion rate exceeding 85%.展开更多
Food security has been an issue of global concern and this has attracted a lot of research interest. Cassava is an extremely popular crop and is becoming the cornerstone for addressing food security in many parts of t...Food security has been an issue of global concern and this has attracted a lot of research interest. Cassava is an extremely popular crop and is becoming the cornerstone for addressing food security in many parts of the world. The competing needs for cassava cuts across both human and animal consumption. It serves as a raw material in textile industry and is now one of the preferred materials for making biofuels. As the world’s population continues to grow, the demand for drought resistant crops such as cassava is increasing. The high demand for various forms of processed cassava will continue to increase cassava prices making it an attractive business venture. Several small-scale cassava farmers are making a fortune and additional income through this business. Preliminary investigations show that the profitable way for a farmer to market his cassava is to add value to it. Unfortunately, cassava undergoes post-harvest physiological deterioration (PPD) after three days of harvest. In order to make cassava farming even more profitable, there is a need to process it within the shelf life of 2 - 3 days after harvesting. One way to preserve cassava is by grating it into pulp and drying it into pellets or chips. In this study, an electrically powered multi-purpose cassava grating machine with grater blades inclined at two different tooth angles, 25˚ and 30˚ was designed, fabricated and its performance characteristics investigated. The results showed that the plate with a tooth angle of 30˚ resulted in higher grating efficiency. This was attributed to better grip on the cassava when perforations on the plate inclined at 30˚. The grating capacity was also significantly improved as very small amounts of cassava slipped out un-grated.展开更多
We experimentally investigate the effective working regions of a planar-integrated magneto-optical trap(MOT).By scanning a blocking point in the incident laser beam,we identify four effective working regions of the la...We experimentally investigate the effective working regions of a planar-integrated magneto-optical trap(MOT).By scanning a blocking point in the incident laser beam,we identify four effective working regions of the laser beam contributing to MOT:a central region corresponding to the downward incident beam and three regions associated with the upward diffracted beams.The latter three regions are the effective regions of the grating chip.It is demonstrated that only three3.5 mm radius grating regions can produce a MOT that is capable of trapping 105atoms with a temperature below 150μK,retaining over 60%of atoms compared to a complete grating chip.This finding suggests that more than 60%of the grating chip area can be saved for other on-chip components,such as metasurfaces and nanophotonic devices,without significantly compromising MOT performance,paving the way for more compact and versatile atom–photon interfaces.展开更多
The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))...The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))and sodium cyanide(NaCN)in the arsenic-containing gold metallurgical tailings can be effectively removed using straight grate process,and the removal of pyrite and sodium cyanide is basically completed during the preheating stage,while the removal of ferrous arsenate requires the roasting stage.The pellets undergo a transformation from magnetite to hematite during the preheating process,and are solidified through micro-crystalline bonding and high-temperature recrystallization of hematite(Fe_(2)O_(3))during the roasting process.Ultimately,pellets with removal rates of 80.77% for arsenic,88.78% for sulfur,and 99.88% for cyanide are obtained,as well as the iron content is 61.1% and the compressive strength is 3071 N,meeting the requirements for blast furnace burden.This study provides an industrially feasible method for treating arsenic-containing gold smelting tailings,benefiting gold production enterprises.展开更多
The temperature distribution of iron ore pellet bed in grate has a significant effect on pellet production and quality control, but the related work is scarce. A well-designed test was successfully carried out by mean...The temperature distribution of iron ore pellet bed in grate has a significant effect on pellet production and quality control, but the related work is scarce. A well-designed test was successfully carried out by means of tracking measurement and the temperature distribution and variation in pellet layers were obtained. The effects of blast tem- perature, blast velocity and oxidation reaction on the pellet layer temperature were studied. According to the analy- sis, the inlet air temperature in the up-draught drying zone (UDD) and blast temperature in the Preheating I (PH I) zone should be raised, and the length of the down-draught drying zone (DDD) should be properly increased.展开更多
The objective of this paper is to optimize the parameters of pellet drying and preheating process in grate.A mathematical model of drying and preheating is developed,and is verified by the experiments.Further,the oper...The objective of this paper is to optimize the parameters of pellet drying and preheating process in grate.A mathematical model of drying and preheating is developed,and is verified by the experiments.Further,the operating parameters of wind temperature,wind speed,grate speed and bed depth etc.are investigated through the orthogonal method using the simulation results.And a relationship of drying,preheating effects and operating parameters is achieved.The results show that the optimization effect can be achieved in the given range when air velocity is about 3.0 m/s and temperature is about 300,500,800,and 1 100 in the updraft drying zone,downdraft drying zone,preheating Ⅰ zone,and preheating Ⅱ zone respectively.The work is help for saving energy and reducing emissions in pellet induration.展开更多
To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more ...To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.展开更多
In this paper, an efficient thermal analysis method is presented for large scale compound semiconductor integrated circuits based on a heterojunction bipolar transistor with considering the change of thermal conductiv...In this paper, an efficient thermal analysis method is presented for large scale compound semiconductor integrated circuits based on a heterojunction bipolar transistor with considering the change of thermal conductivity with temperature.The influence caused by the thermal conductivity can be equivalent to the increment of the local temperature surrounding the individual device. The junction temperature for each device can be efficiently calculated by the combination of the semianalytic temperature distribution function and the iteration of local temperature with high accuracy, providing a temperature distribution for a full chip. Applying this method to the InP frequency divider chip and the GaAs analog to digital converter chip, the computational results well agree with the results from the simulator COMSOL and the infrared thermal imager respectively. The proposed method can also be applied to thermal analysis in various kinds of semiconductor integrated circuits.展开更多
Grate-kiln-cooler has become a major process of producing iron ore pellets in China. Due to the diversity of the raw materials used and the multi-device multi-variable characteristics,this process still encounters wit...Grate-kiln-cooler has become a major process of producing iron ore pellets in China. Due to the diversity of the raw materials used and the multi-device multi-variable characteristics,this process still encounters with control problem. An attempt was proposed to deal with this issue. The three-device-integrated feature of the process was firstly analyzed to obtain control strategy,and then an intelligent control system using a combination of expert system approach and Takagi-Sugeno( T-S) fuzzy model was developed. Expert system approach was used to diagnose and remedy the abnormal conditions,while T-S fuzzy model was used to stabilize the thermal state. In the construction of T-S fuzzy rules,antecedents were identified by fuzzy c-mean clustering algorithm incorporated with subtractive clustering algorithm,and consequent parameters were identified by recursive least square algorithm. The control system was applied in a Chinese pelletizing plant and the application results demonstrated its effectiveness of stabilizing the thermal states within three devices.展开更多
The irregular wave experiment on the stability of the Grate Plate was carried out in the light of the wind wave spectrum recently advanced by Prof. Wen Shengchang. The stability formulas of GP under the action of irre...The irregular wave experiment on the stability of the Grate Plate was carried out in the light of the wind wave spectrum recently advanced by Prof. Wen Shengchang. The stability formulas of GP under the action of irregular waves were procured. Comparisons between the formulas obtained and those of GP under regular waves advanced by the first author in 1993 showed a coincident result.展开更多
Based on the analysis of heat transfer mechanics,physical and chemical change of pellet drying and preheating process in grate,the mathematical model is established and solved by three-diagonal matrix algorithm. With ...Based on the analysis of heat transfer mechanics,physical and chemical change of pellet drying and preheating process in grate,the mathematical model is established and solved by three-diagonal matrix algorithm. With Visual Basic 6.0 a simulation software is developed.The model is verified by measurements at a domestic pellet plant,and the temperature distribution of pellet bed is gained.Meanwhile,the influence of different operation parameters on the pellet thermal process is studied.The results can be taken as a basis of practical production control and the grate optimizing design.展开更多
This essay is a culmination of intensive research exploring the commonality between Dr. John Keats' poetry and the lyrics of The Grateful Dead. As this is the 50th anniversary of The Grateful Dead, it is appropriate ...This essay is a culmination of intensive research exploring the commonality between Dr. John Keats' poetry and the lyrics of The Grateful Dead. As this is the 50th anniversary of The Grateful Dead, it is appropriate to celebrate that with a scholarly paper. In teaching my course The GrateJid Dead as Poets I discovered compelling intersections between English Romantic poetry and the lyrics of The Grateful Dead. These findings are useful and important because the work of the Dead spans five decades and endures in ways that assure their place in literary history as well as the music world. The importance of The Grateful Dead cannot be overstated. They bring hope, love, joy and philanthropy to the world, as did the English Romantic poets. There is much yet to explore; this essay is about only a few of the many Grateful Dead lyrics.展开更多
The article provides substantiation of the choice of the quenching parametersfor the working zone of gin and linter grates and the quenchingparameters.The results of bench and industrial tests of the grate with aharde...The article provides substantiation of the choice of the quenching parametersfor the working zone of gin and linter grates and the quenchingparameters.The results of bench and industrial tests of the grate with ahardened working zone are also given.展开更多
Effectively managing floods in urban regions requires effectively designed and well-maintained runoff collection system. The absence of such a system and intense rainfall event will have the potential to disrupt the u...Effectively managing floods in urban regions requires effectively designed and well-maintained runoff collection system. The absence of such a system and intense rainfall event will have the potential to disrupt the urban life and cause significant economic loss to properties. Grated inlets, which are a key component in urban drainage network, are used to capture the runoff. In this work, a three dimensional CFD model was developed based on open-source CFD tool, OpenFOAM®, to model flow over a grated inlet. An incompressible, transient, multiphase flow, Volume of Fluid (VOF) simulation was performed to predict the water flow rate through the grate inlet. The predicted flow rates are compared with the HEC-22 monograph values. The close agreement between the results shows the potential of using CFD modeling approach to test the reliability of existing drainage inlets for different flow scenarios.展开更多
基金supported by the National Key Research and Development Program of China(No.2023YFC3707002).
文摘The compressive strength of the pellets is a key indicator that determines the production efficiency in straight grate.It usually relies on manual sampling and testing,which is cumbersome and inefficient.To address this,a time series prediction model for pellet compressive strength was developed,combining a gradient boosting decision tree with a temporal convolutional network(GBDT-TCN).Firstly,the key physical characteristics of the pellet production process were established through the feature construction method,and then the multicollinear features were eliminated based on the Spearman correlation coefficient.The final selection of feature parameters,amounting to 9,was determined using recursive feature elimination(RFE)method.Finally,the GBDT algorithm was used to establish the nonlinear relationship between these features and the compressive strength.The GBDT prediction results and process data were constructed into a time series dataset,which was input into the TCN unit cascade model.The time series information was captured through the distribution coefficient of the loss function in the time series.Results illustrate that the GBDT-TCN method proposed performs well in the task of predicting the compressive strength of pellets.Compared with the prediction model using only GBDT,the accuracy within±100 N is increased from 83.33%to 90.00%.
基金supported by the National Natural Science Foundation of China(No.52274344)the Provincial Natural Science Foundation of Hunan(Nos.2022JJ30723 and 2023JJ20068)the Science and Technology Innovation Program of Hunan Province(2023RC3042).
文摘Controlling the adhesion of potentially corrosive substances from flue gas on grate bar is crucial for extending the operational lifespan of the equipment.The adhesive behaviour and mechanism of ultrafine particulate matters(UPM)throughout the sintering process were elucidated,and measures to control adhesion on grate bars were developed.Research findings indicated that a small quantity of UPM were found on grate bar during the initial sintering stages(ignition stage and middle stageⅠandⅡ).The main compositions of UPM were FexOy-rich,CaO-rich,and aluminium silicate-rich particles.In contrast,corrosive substances like alkali metal compounds were almost absent.These UPM adhered onto grate bar primarily through inertial impaction.When moving to the final sintering stages(middle stageⅢand temperature rising stage),many UPM rich in corrosive substances like NaCl and KCl adhered to the grate bar.These UPM adhered to grate bar through thermal diffusion and vortex deposition.Solid waste water washing technology can greatly decrease the quantity of UPM(rich in NaCl and KCl)on the grate bar due to vortex deposition and thermal diffusion,and it represents a potentially promising way to control adhesion and corrosion on grate bars.
基金financially supported by the National Key Research and Development Program of China(No.2023YFC3707002)Hunan Provincial Innovation Foundation for Postgraduate(No.QL20220069)Postgraduate Innovative Project of Central South University(No.1053320214756).
文摘The implementation of embedded selective catalytic reduction(SCR)denitration in chain grate during iron ore pelletizing process obviates additional flue gas heating.However,the influence of gas components and alkali metal on SCR denitration requires attention.The SCR denitration behavior in the preheating section of chain grate was investigated,and the combined influence mechanisms of H_(2)O(g),SO_(2),and potassium were revealed.The results show that the presence of H_(2)O(g)and SO_(2) in the flue gas decreases the NO conversion rate of the catalyst from 96.3%to 79.5%,while potassium adsorbed on the catalyst surface further reduces the NO conversion rate to 74.1%.H_(2)O(g),SO_(2),and potassium in the flue gas form sulfate and potassium salt on the catalyst surface,blocking the pore structure,thereby decreasing the gas adsorption capacity of the catalyst.Moreover,SO_(2) and potassium engage in competitive adsorption and reaction with NH_(3) and NO at the active sites on the catalyst surface,reducing the content and activity of the catalyst effective component.Increasing the flue gas temperature can promote the decomposition of ammonium sulfate and ammonium bisulfate on the catalyst surface,but it has little effect on potassium.Additionally,potassium will exacerbate sulfur poisoning of the catalyst.Hence,the embedded SCR denitration process requires electrostatic precipitation to eliminate the adverse impacts of potassium and thermal regime optimization to raise flue gas temperature to 350℃,thereby increasing NO conversion rate exceeding 85%.
文摘Food security has been an issue of global concern and this has attracted a lot of research interest. Cassava is an extremely popular crop and is becoming the cornerstone for addressing food security in many parts of the world. The competing needs for cassava cuts across both human and animal consumption. It serves as a raw material in textile industry and is now one of the preferred materials for making biofuels. As the world’s population continues to grow, the demand for drought resistant crops such as cassava is increasing. The high demand for various forms of processed cassava will continue to increase cassava prices making it an attractive business venture. Several small-scale cassava farmers are making a fortune and additional income through this business. Preliminary investigations show that the profitable way for a farmer to market his cassava is to add value to it. Unfortunately, cassava undergoes post-harvest physiological deterioration (PPD) after three days of harvest. In order to make cassava farming even more profitable, there is a need to process it within the shelf life of 2 - 3 days after harvesting. One way to preserve cassava is by grating it into pulp and drying it into pellets or chips. In this study, an electrically powered multi-purpose cassava grating machine with grater blades inclined at two different tooth angles, 25˚ and 30˚ was designed, fabricated and its performance characteristics investigated. The results showed that the plate with a tooth angle of 30˚ resulted in higher grating efficiency. This was attributed to better grip on the cassava when perforations on the plate inclined at 30˚. The grating capacity was also significantly improved as very small amounts of cassava slipped out un-grated.
基金Project supported by the National Key R&D Program of China(Grant Nos.2021YFA1402004 and 2021YFF0603701)the National Natural Science Foundation of China(Grant Nos.12134014,U21A20433,U21A6006,and 92265108)+1 种基金supported by the Fundamental Research Funds for the Central UniversitiesUSTC Research Funds of the Double First-Class Initiative。
文摘We experimentally investigate the effective working regions of a planar-integrated magneto-optical trap(MOT).By scanning a blocking point in the incident laser beam,we identify four effective working regions of the laser beam contributing to MOT:a central region corresponding to the downward incident beam and three regions associated with the upward diffracted beams.The latter three regions are the effective regions of the grating chip.It is demonstrated that only three3.5 mm radius grating regions can produce a MOT that is capable of trapping 105atoms with a temperature below 150μK,retaining over 60%of atoms compared to a complete grating chip.This finding suggests that more than 60%of the grating chip area can be saved for other on-chip components,such as metasurfaces and nanophotonic devices,without significantly compromising MOT performance,paving the way for more compact and versatile atom–photon interfaces.
基金Project(52274343)supported by the National Natural Science Foundation of ChinaProjects(2023YFC3903900,2023YFC3903904)supported by the National Key R&D Program of China。
文摘The utilization of arsenic-containing gold dressing tailings is an urgent issue faced by gold production companies worldwide.The thermodynamic analysis results indicate that ferrous arsenate(FeAsO_(4)),pyrite(FeS_(2))and sodium cyanide(NaCN)in the arsenic-containing gold metallurgical tailings can be effectively removed using straight grate process,and the removal of pyrite and sodium cyanide is basically completed during the preheating stage,while the removal of ferrous arsenate requires the roasting stage.The pellets undergo a transformation from magnetite to hematite during the preheating process,and are solidified through micro-crystalline bonding and high-temperature recrystallization of hematite(Fe_(2)O_(3))during the roasting process.Ultimately,pellets with removal rates of 80.77% for arsenic,88.78% for sulfur,and 99.88% for cyanide are obtained,as well as the iron content is 61.1% and the compressive strength is 3071 N,meeting the requirements for blast furnace burden.This study provides an industrially feasible method for treating arsenic-containing gold smelting tailings,benefiting gold production enterprises.
基金Sponsored by National High Technology Research and Development Program of China (2007AA05Z215)
文摘The temperature distribution of iron ore pellet bed in grate has a significant effect on pellet production and quality control, but the related work is scarce. A well-designed test was successfully carried out by means of tracking measurement and the temperature distribution and variation in pellet layers were obtained. The effects of blast tem- perature, blast velocity and oxidation reaction on the pellet layer temperature were studied. According to the analy- sis, the inlet air temperature in the up-draught drying zone (UDD) and blast temperature in the Preheating I (PH I) zone should be raised, and the length of the down-draught drying zone (DDD) should be properly increased.
基金the National High Technology Research and Development Program (863) of China(No.2007AA05Z215)
文摘The objective of this paper is to optimize the parameters of pellet drying and preheating process in grate.A mathematical model of drying and preheating is developed,and is verified by the experiments.Further,the operating parameters of wind temperature,wind speed,grate speed and bed depth etc.are investigated through the orthogonal method using the simulation results.And a relationship of drying,preheating effects and operating parameters is achieved.The results show that the optimization effect can be achieved in the given range when air velocity is about 3.0 m/s and temperature is about 300,500,800,and 1 100 in the updraft drying zone,downdraft drying zone,preheating Ⅰ zone,and preheating Ⅱ zone respectively.The work is help for saving energy and reducing emissions in pellet induration.
文摘To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.
基金Project supported by the Advance Research Foundation of China(Grant No.9140Axxx501)the National Defense Advance Research Project,China(Grant No.3151xxxx301)+1 种基金the Frontier Innovation Program,China(Grant No.48xx4)the 111 Project,China(Grant No.B12026)
文摘In this paper, an efficient thermal analysis method is presented for large scale compound semiconductor integrated circuits based on a heterojunction bipolar transistor with considering the change of thermal conductivity with temperature.The influence caused by the thermal conductivity can be equivalent to the increment of the local temperature surrounding the individual device. The junction temperature for each device can be efficiently calculated by the combination of the semianalytic temperature distribution function and the iteration of local temperature with high accuracy, providing a temperature distribution for a full chip. Applying this method to the InP frequency divider chip and the GaAs analog to digital converter chip, the computational results well agree with the results from the simulator COMSOL and the infrared thermal imager respectively. The proposed method can also be applied to thermal analysis in various kinds of semiconductor integrated circuits.
基金Item Sponsored by National Natural Science Foundation of China(51174253)
文摘Grate-kiln-cooler has become a major process of producing iron ore pellets in China. Due to the diversity of the raw materials used and the multi-device multi-variable characteristics,this process still encounters with control problem. An attempt was proposed to deal with this issue. The three-device-integrated feature of the process was firstly analyzed to obtain control strategy,and then an intelligent control system using a combination of expert system approach and Takagi-Sugeno( T-S) fuzzy model was developed. Expert system approach was used to diagnose and remedy the abnormal conditions,while T-S fuzzy model was used to stabilize the thermal state. In the construction of T-S fuzzy rules,antecedents were identified by fuzzy c-mean clustering algorithm incorporated with subtractive clustering algorithm,and consequent parameters were identified by recursive least square algorithm. The control system was applied in a Chinese pelletizing plant and the application results demonstrated its effectiveness of stabilizing the thermal states within three devices.
文摘The irregular wave experiment on the stability of the Grate Plate was carried out in the light of the wind wave spectrum recently advanced by Prof. Wen Shengchang. The stability formulas of GP under the action of irregular waves were procured. Comparisons between the formulas obtained and those of GP under regular waves advanced by the first author in 1993 showed a coincident result.
基金the National High Technology Research and Development Program(863) of China (No.2007AA05Z215)
文摘Based on the analysis of heat transfer mechanics,physical and chemical change of pellet drying and preheating process in grate,the mathematical model is established and solved by three-diagonal matrix algorithm. With Visual Basic 6.0 a simulation software is developed.The model is verified by measurements at a domestic pellet plant,and the temperature distribution of pellet bed is gained.Meanwhile,the influence of different operation parameters on the pellet thermal process is studied.The results can be taken as a basis of practical production control and the grate optimizing design.
文摘This essay is a culmination of intensive research exploring the commonality between Dr. John Keats' poetry and the lyrics of The Grateful Dead. As this is the 50th anniversary of The Grateful Dead, it is appropriate to celebrate that with a scholarly paper. In teaching my course The GrateJid Dead as Poets I discovered compelling intersections between English Romantic poetry and the lyrics of The Grateful Dead. These findings are useful and important because the work of the Dead spans five decades and endures in ways that assure their place in literary history as well as the music world. The importance of The Grateful Dead cannot be overstated. They bring hope, love, joy and philanthropy to the world, as did the English Romantic poets. There is much yet to explore; this essay is about only a few of the many Grateful Dead lyrics.
文摘The article provides substantiation of the choice of the quenching parametersfor the working zone of gin and linter grates and the quenchingparameters.The results of bench and industrial tests of the grate with ahardened working zone are also given.
文摘Effectively managing floods in urban regions requires effectively designed and well-maintained runoff collection system. The absence of such a system and intense rainfall event will have the potential to disrupt the urban life and cause significant economic loss to properties. Grated inlets, which are a key component in urban drainage network, are used to capture the runoff. In this work, a three dimensional CFD model was developed based on open-source CFD tool, OpenFOAM®, to model flow over a grated inlet. An incompressible, transient, multiphase flow, Volume of Fluid (VOF) simulation was performed to predict the water flow rate through the grate inlet. The predicted flow rates are compared with the HEC-22 monograph values. The close agreement between the results shows the potential of using CFD modeling approach to test the reliability of existing drainage inlets for different flow scenarios.