Graphitic carbon nitride(g-C_(3)N_(4)),known for its green and abundant nature and composed of carbon and nitrogen in a two-dimensional structure,has emerged as a significant area of interest across various discipline...Graphitic carbon nitride(g-C_(3)N_(4)),known for its green and abundant nature and composed of carbon and nitrogen in a two-dimensional structure,has emerged as a significant area of interest across various disciplines,particularly in energy conversion and storage.Its recent demonstrations of high potential in supercapacitor applications mark it as a promising alternative to graphene within the realm of materials science.Numerous favorable features,such as chemical and thermal stability,abundant nitrogen content,eco-friendly attributes,and gentle conditions for synthesis,are shown.This review summarizes recent advancements in the use of g-C_(3)N_(4)and its composites as electrodes for supercapacitors,highlighting the advantages and issues associated with g-C_(3)N_(4)in these applications.This emphasizes situations where the composition of g-C_(3)N_(4)with other materials,such as metal oxides,metal chalcogenides,carbon materials,and conducting polymers,overcomes its limitations,leading to composite materials with improved functionalities.This review discusses the challenges that still need to be addressed and the possible future roles of g-C_(3)N_(4)in the research of advanced supercapacitor technology,such as battery-hybrid supercapacitors,flexible supercapacitors,and photo-supercapacitors.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))exhibits great mechanical as well as thermal characteristics,making it a valuable ma-terial for use in photoelectric conversion devices,an accelerator for synthesis of organic com...Graphitic carbon nitride(g-C_(3)N_(4))exhibits great mechanical as well as thermal characteristics,making it a valuable ma-terial for use in photoelectric conversion devices,an accelerator for synthesis of organic compounds,an electrolyte for fuel cell applications or power sources,and a hydrogen storage substance and a fluorescence detector.It is fabricated using dif-ferent methods,and there is a variety of morphologies and nanostructures such as zero to three dimensions that have been designed for different purposes.Ther e are many reports about g-C_(3)N_(4) in recent years,but a comprehensive review which covers nanostructure dimensions and their properties are missing.This review paper aims to give basic and comprehensive understanding of the photocatalytic and electrocatalytic usages of g-C_(3)N_(4).It highlights the recent progress of g-C_(3)N_(4) nano-structure designing by covering synthesis methods,dimensions,morphologies,applications and properties.Along with the summary,we will also discuss the challenges and prospects.Scientists,investigators,and engineers looking at g-C_(3)N_(4) nanostructures for a variety of applications might find our review paper to be a useful resource.展开更多
Ionogels,generally formed by immobilizing ionic liquids(ILs)with polymer gelators,hold considerable promise as quasi-solid-state electrolytes(QSSEs)for lithium metal batteries(LMBs)due to their high safety and electro...Ionogels,generally formed by immobilizing ionic liquids(ILs)with polymer gelators,hold considerable promise as quasi-solid-state electrolytes(QSSEs)for lithium metal batteries(LMBs)due to their high safety and electrode compatibility.However,their practical use in high-temperature LMBs suffers from the softened polymer chains of gelator at high temperatures,leading to liquid leakage and severe growth of Li dendrite.Here,a novel inorganic ionogel(PCNIL)combining lithium salt-containing IL with porous graphitic carbon nitride nanosheets(PCN)is developed through direct physical mixing.PCNIL exhibits a superior ionic conductivity(0.75 mS cm^(-1))at room temperature similar to that of neat IL electrolyte(LiIL)and a Li^(+)transference number(0.56)greatly higher than that of Li-IL(0.20).Furthermore,PCNIL maintains a temperature-independent shear storage modulus of up to 5 MPa from room temperature to 150℃.Consequently,the Li|PCNIL|Li symmetrical cell demonstrates extended reversible lithium plating/stripping over 1200 h without dendritic growth.The robust mechanical strength,excellent thermal stability,and electrochemical stability of PCNIL allow Li|PCNIL|LiFePO_(4)cells to operate stably in a wide temperature range of 25–150℃.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))has garnered significant attention due to its remarkable advantages such as lightweight,exceptional chemical stability and defect-rich surface.Nevertheless,its inadequate electric...Graphitic carbon nitride(g-C_(3)N_(4))has garnered significant attention due to its remarkable advantages such as lightweight,exceptional chemical stability and defect-rich surface.Nevertheless,its inadequate electrical conductivity and impedance matching hindered the practical implementation in the electromagnetic wave absorption(EMWA)field.To address these challenges,we developed a composites system of carbon spheres/g-C_(3)N_(4)(CCN)through a supramolecular self-assembly strategy,subsequently integrated with reduced graphene oxide(RGO)via a water bath method.Systematic investigation revealed that the EMWA performance of CCN/RGO composites exhibited a distinct dependence(a trend of first increasing and then decreasing)on RGO content.Especially,when the mass ratio of RGO to CCN was 20%,the CCN/RGO composite brought a minimum reflection loss value of-45.40 dB at 13.44 GHz and a broad effective absorbing bandwidth of 6.32 GHz at 2.19 mm.First-principles calculations based on density functional theory suggested that the constructed heterostructure effectively facilitated electron mobility and charge redistribution,boosting both conductive loss and polarization loss mechanisms.The exceptional absorption performance was ascribed to the synergistic effects of conductive loss,relaxation loss,and suitable impedance matching.As a results,this work provided a rational design strategy for high-performance g-C_(3)N_(4)-based EMWA materials.展开更多
Rational design of defected carbons adjacent to nitrogen(N)dopants is a fascinating but challenging approach for enhancing the catalytic performance of N-doped carbon.Meanwhile,the combined effect of heteroatom doping...Rational design of defected carbons adjacent to nitrogen(N)dopants is a fascinating but challenging approach for enhancing the catalytic performance of N-doped carbon.Meanwhile,the combined effect of heteroatom doping and defect engineering can efficiently increase the oxygen reduction reaction(ORR)ability of inactive carbons through charge redistribution.Herein,we report that an enhanced built-in electric field caused by the combined effect of N-doping and carbon defects in the twodimensional(2D)mesoporous N-doped carbon nano flakes(NCNF)is a promising technique for improving ORR performance.As a result,the NCNF exhibits more promising ORR activity than Pt/C and similar performance with reported robust catalysts.Comprehensive experimental and theoretical investigations suggest that topologically defected carbon adjacent to the graphitic valley nitrogen is a real active site,rendering optimal energy for the adsorption of ORR intermediates and lowering the total energy barrier for ORR.Also,NCNF-based Zn-air batteries exhibited an excellent power density and specific capacity of~121.10 mW cm^(-2)and~679.86 mA h g_(Zn)^(-1),respectively.This study not only offers new insights into defected carbons with graphitic valley N for ORR but also proposes novel catalyst design principles and provides a solid grasp of the built-in electric field effect on the ORR performance of defective catalysts.展开更多
With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4...With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance.展开更多
A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling t...A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst.展开更多
N-doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+storage performance.However,N-doped carbon anodes still suffer from low N-doping levels and low initial ...N-doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+storage performance.However,N-doped carbon anodes still suffer from low N-doping levels and low initial Coulombic efficiency(ICE).In this study,high N-doped and low graphitic-N carbons(LGNCs)with enhanced ICE were synthesized by taking advantage of a denitrification strategy for graphitic carbon nitride(g-C_(3)N_(4)).In brief,more than 14.5 at%of N from g-C_(3)N_(4)(55.1 at%N)was retained by reacting graphitic-N with lithium,which was subsequently removed.As graphitic-N is largely responsible for the irreversible capacity,the anode's performance was significantly increased.Compared to general N-doped carbons with high graphitic-N proportion(>50%)and low N content(<15 at%),LGNCs delivered a low proportion of 10.8%-17.2% within the high N-doping content of 14.5-42.7 at%,leading to an enhanced specific capacity of 1499.9mAh g^(-1) at an ICE of 93.7% for the optimal sample of LGNC(4:1).This study provides a facile strategy to control the N content and speciation,achieving both high Li+storage capacity and high ICE,and thus promoting research and application of N-doped carbon materials.展开更多
Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the ox...Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the oxidation of nitric oxide(NO) under visible-light irradiation.The inclusion of pure Bi metal in the g-C3N4 layers markedly improved the light absorption of the Bi-CN composites from the ultraviolet to the near-infrared region because of the typical surface plasmon resonance of Bi metal.The separation and transfer of photogenerated charge carriers were greatly accelerated by the presence of built-in Mott-Schottky effects at the interface between Bi metal and g-C3N4.As a result,the Bi-CN composite photocatalysts exhibited considerably enhanced efficiency in the photocatalytic removal of NO compared with that of Bi metal or g-C3N4 alone.The pomegranate-like structure of the Bi-CN composites and an explanation for their improved photocatalytic activity were proposed.This work not only provides a design for highly efficient g-C3N4-based photocatalysts through modification with Bi metal,but also offers new insights into the mechanistic understanding of g-C3N4-based photo catalysis.展开更多
As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemic...As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.展开更多
Graphitic carbon nitride(g-C3N4)was synthesized by heating melamine and was then treated with sodium hydroxide solution under a hydrothermal condition to obtain g-C3N4 with a large specific surface area(HSSA).HSSA sho...Graphitic carbon nitride(g-C3N4)was synthesized by heating melamine and was then treated with sodium hydroxide solution under a hydrothermal condition to obtain g-C3N4 with a large specific surface area(HSSA).HSSA shows higher photocatalytic activity for decomposition of acetaldehyde than that of original g-C3N4.HSSA was modified with RuO2 as a co-catalyst by the impregnation method.HSSA loaded with 0.05 wt%RuO2 shows the highest photocatalytic activity for acetaldehyde decomposition under visible light(k=455 nm).展开更多
Graphitic carbons with reasonable pore volume and appropriate graphitization degree can provide efficient Li+/electrolyte-transfer channels and ameliorate the sluggish dynamic behavior of battery-type carbon negative ...Graphitic carbons with reasonable pore volume and appropriate graphitization degree can provide efficient Li+/electrolyte-transfer channels and ameliorate the sluggish dynamic behavior of battery-type carbon negative electrode in lithium-ion capacitors(LICs).In this work,onion-like graphitic carbon materials are obtained by using carbon quantum dots as precursors after sintering,and the effects of alkali metal salts on the structure,morphology and performance of the samples are focused.The results show that alkali metal salts as activator can etch graphitic carbons,and the specific surface area and pore size distribution are intimately related to the description of the alkali metal salt.Moreover,it also affects the graphitization degree of the materials.The porous graphitic carbons(SGCs)obtained by NaCl activation exhibit high specific surface area(77.14 m^(2)·g^(-1))and appropriate graphitization degree.It is expectable that the electrochemical performance for lithium-ions storage can be largely promoted by the smart combination of catalytic graphitization and pores-creating strategy.High-performance LICs(S-GCs//AC LICs)are achieved with high energy density of 92 Wh·kg^(-1)and superior rate capability(66.3 Wh·kg^(-1)at10 A·g^(-1))together with the power density as high as10020.2 W·kg^(-1).展开更多
The graphitic carbon nitride(g-C_3N_4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of env...The graphitic carbon nitride(g-C_3N_4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of environmental remediation. The g-C_3N_4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are ‘‘earth-abundant.'' This review summarizes the latest progress related to the design and construction of g-C_3N_4-based materials and their applications including catalysis, sensing,imaging, and white-light-emitting diodes. An outlook on possible further developments in g-C_3N_4-based research for emerging properties and applications is also included.展开更多
Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide(ZnO)-based photocatalysts.In this paper,we report the fabrication of graphitic-carbon-mediated ZnO nan...Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide(ZnO)-based photocatalysts.In this paper,we report the fabrication of graphitic-carbon-mediated ZnO nanorod arrays(NRAs)with enhanced photocatalytic activity and photostability for CO2 reduction under visible light irradiation.ZnO NRA/C-x(x=005,01,02,and 03)nanohybrids are prepared by calcining pre-synthesized ZnO NRAs with different amounts of glucose(0.05,0.1,0.2,and 0.3 g)as a carbon source via a hydrothermal method.X-ray photoelectron spectroscopy reveals that the obtained ZnO NRA/C-x nanohybrids are imparted with the effects of both carbon doping and carbon coating,as evidenced by the detected C-O-Zn bond and the C-C,C-O and C=O bonds,respectively.While the basic structure of ZnO remains unchanged,the UV-Vis absorption spectra show increased absorbance owing to the carbon doping effect in the ZnO NRA/C-x nanohybrids.The photoluminescence(PL)intensities of ZnO NRA/C-x nanohybrids are lower than that of bare ZnO NRA,indicating that the graphitic carbon layer coated on the surface of the ZnO NRA significantly enhances the charge carrier separation and transport,which in turn enhances the photoelectrochemical property and photocatalytic activity of the ZnO NRA/C-x nanohybrids for CO2 reduction.More importantly,a long-term reaction of photocatalytic CO2 reduction demonstrates that the photostability of ZnO NRA/C-x nanohybrids is significantly increased in comparison with the bare ZnO NRA.展开更多
Europium-doped graphitic carbon nitride was synthesized by an easy method and characterized by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-Vis DRS), Fourier transform infrared ...Europium-doped graphitic carbon nitride was synthesized by an easy method and characterized by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-Vis DRS), Fourier transform infrared spectroscopy (FTIR), photolu- minescence spectra (PL) and transmission electron microscopy (TEM). The effect of dopant concentration on the rate of photocata- lytic degradation was investigated through degrading methylene blue aqueous solution. The results indicated that the europium-doped samples all possessed increased photocatalytic activity and the optimal europium content was 0.38 wt.%. Moreover, a possible photo- catalytic mechanism for the europium-doped graphitic carbon nitride was proposed.展开更多
Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsor...Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsorption, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and temperature-programmed desorption were used to characterize the as-prepared catalyst. The results showed that plasma treatment cannot change the morphology of the as-prepared catalyst but introduces nitrogen vacancies and sulfur into g-C3N4 lattice simultaneously. The as-prepared co-doped g-C3N4 displays an ammonium ion production rate as high as 6.2 mg·L^-1·h^-1·gcat^-1, which is 2.3 and 25.8 times higher than that of individual N-vacancy-doped g-C3N4 and neat g-C3N4, respectively, as well as showing good catalytic stability. Experimental and density functional theory calculation results indicate that, compared with individual N vacancy doping, the introduction of sulfur can promote the activation ability of N vacancies to N2 molecules, leading to promoted N2 photofixation performance.展开更多
The exfoliation of bulk graphitic carbon nitride(g-C_(3)N_(4))into monolayer has been intensively studied to induce maximum sur-face area for fundamental studies,but ended in failure to realize chemi-cally and physica...The exfoliation of bulk graphitic carbon nitride(g-C_(3)N_(4))into monolayer has been intensively studied to induce maximum sur-face area for fundamental studies,but ended in failure to realize chemi-cally and physically well-defined monolayer of g-C_(3)N_(4)mostly due to the difficulty in reducing the layer thickness down to an atomic level.It has,therefore,remained as a challenging issue in two-dimensional(2D)chemistry and physics communities.In this study,an“atomic monolayer of g-C_(3)N_(4)with perfect two-dimensional limit”was successfully prepared by the chemically well-defined two-step routes.The atomically resolved monolayer of g-C_(3)N_(4)was also confirmed by spectroscopic and micro-scopic analyses.In addition,the experimental Cs-HRTEM image was collected,for the first time,which was in excellent agreement with the theoretically simulated;the evidence of monolayer of g-C_(3)N_(4)in the perfect 2D limit becomes now clear from the HRTEM image of orderly hexagonal symmetry with a cavity formed by encirclement of three adjacent heptazine units.Compared to bulk g-C_(3)N_(4),the present g-C_(3)N_(4)monolayer showed significantly higher photocatalytic gen-eration of H2O2 and H2,and electrocatalytic oxygen reduction reaction.In addition,its photocatalytic efficiency for H2O2 production was found to be the best for any known g-C_(3)N_(4)nanomaterials,underscoring the remarkable advantage of monolayer formation in optimizing the catalyst performance of g-C_(3)N_(4).展开更多
Fe-containing graphitic carbon nitride(Fe-g-C3N4) materials were synthesized via one-step pyroly-sis of FeCl3 and dicyandiamide. The physicochemical properties of the synthesized Fe-g-C3N4 sam-ples were characterize...Fe-containing graphitic carbon nitride(Fe-g-C3N4) materials were synthesized via one-step pyroly-sis of FeCl3 and dicyandiamide. The physicochemical properties of the synthesized Fe-g-C3N4 sam-ples were characterized by N2 adsorption-desorption, X-ray diffraction, thermal gravimetric, Fourier transform infrared, UV-vis diffuse reflectance, X-ray photoelectron spectroscopy, and transmission electron microscopy. The Fe cations were anchored by nitrogen-rich g-C3N4, whereas the graphitic structures of g-C3N4 were retained after the introduction of Fe. As heterogeneous catalysts, Fe-g-C3 N4 exhibited good catalytic activity in the direct hydroxylation of benzene to phenol with H2O2, affording a maximum yield of phenol of up to 17.5%. Compared with other Fe- and V-containing g-C3N4 materials, Fe-g-C3N4 features a more convenient preparation procedure and higher catalytic productivity of phenol.展开更多
This paper reported the impedance-type humidity sensor based on Ti_(3)C_(2)T_(x)/g-C_(3)N_(4)nanomaterials which was fabricated on a flexible polyethylene terephthalate(PET)substrate.The scanning electron microscopy(S...This paper reported the impedance-type humidity sensor based on Ti_(3)C_(2)T_(x)/g-C_(3)N_(4)nanomaterials which was fabricated on a flexible polyethylene terephthalate(PET)substrate.The scanning electron microscopy(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS)measurements were used to demonstrate the successful synthesis and combination of Ti_(3)C_(2)T_(x)and g-C_(3)N_(4)nanomaterials.The performance of the humidity sensor was tested at room temperature.The experimental results showed that the Ti_(3)C_(2)T_(x)nanosheets with g-C_(3)N_(4)nanosheets endowed the humidity sensor with an ultra-high response,rapid response/recovery time,and negligible hysteresis.The complex impedance spectroscopy(CIS)and bode diagrams were used to further analyze the sensing mechanism of the Ti_(3)C_(2)T_(x)/g-C_(3)N_(4)humidity sensor.The Ti_(3)C_(2)T_(x)/g-C_(3)N_(4)humidity sensor can monitor skin humidity and high-humidity alarm,which demonstrates great potential applications in various fields.展开更多
基金financial support of the TMA pai scholarship from the Manipal Institute of Technology,Manipal Academy of Higher Education,Manipal,in achieving this milestone。
文摘Graphitic carbon nitride(g-C_(3)N_(4)),known for its green and abundant nature and composed of carbon and nitrogen in a two-dimensional structure,has emerged as a significant area of interest across various disciplines,particularly in energy conversion and storage.Its recent demonstrations of high potential in supercapacitor applications mark it as a promising alternative to graphene within the realm of materials science.Numerous favorable features,such as chemical and thermal stability,abundant nitrogen content,eco-friendly attributes,and gentle conditions for synthesis,are shown.This review summarizes recent advancements in the use of g-C_(3)N_(4)and its composites as electrodes for supercapacitors,highlighting the advantages and issues associated with g-C_(3)N_(4)in these applications.This emphasizes situations where the composition of g-C_(3)N_(4)with other materials,such as metal oxides,metal chalcogenides,carbon materials,and conducting polymers,overcomes its limitations,leading to composite materials with improved functionalities.This review discusses the challenges that still need to be addressed and the possible future roles of g-C_(3)N_(4)in the research of advanced supercapacitor technology,such as battery-hybrid supercapacitors,flexible supercapacitors,and photo-supercapacitors.
基金M Tahir is funded by EU H2020 Marie Skłodows-ka-Curie Fellowship(1439425).
文摘Graphitic carbon nitride(g-C_(3)N_(4))exhibits great mechanical as well as thermal characteristics,making it a valuable ma-terial for use in photoelectric conversion devices,an accelerator for synthesis of organic compounds,an electrolyte for fuel cell applications or power sources,and a hydrogen storage substance and a fluorescence detector.It is fabricated using dif-ferent methods,and there is a variety of morphologies and nanostructures such as zero to three dimensions that have been designed for different purposes.Ther e are many reports about g-C_(3)N_(4) in recent years,but a comprehensive review which covers nanostructure dimensions and their properties are missing.This review paper aims to give basic and comprehensive understanding of the photocatalytic and electrocatalytic usages of g-C_(3)N_(4).It highlights the recent progress of g-C_(3)N_(4) nano-structure designing by covering synthesis methods,dimensions,morphologies,applications and properties.Along with the summary,we will also discuss the challenges and prospects.Scientists,investigators,and engineers looking at g-C_(3)N_(4) nanostructures for a variety of applications might find our review paper to be a useful resource.
基金support from National Natural Science Foundation of China(52072118 and 52373206)the Open Foundation of State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle(72275002)+2 种基金Research fund of Yue Lu Mountain Industrial Innovation Center(2023YCII0137)the Open Research Fund of School of Chemistry and Chemical Engineering,Henan Normal University(2024Z04)Natural Science Foundation of Hunan Province(2024JJ5076)。
文摘Ionogels,generally formed by immobilizing ionic liquids(ILs)with polymer gelators,hold considerable promise as quasi-solid-state electrolytes(QSSEs)for lithium metal batteries(LMBs)due to their high safety and electrode compatibility.However,their practical use in high-temperature LMBs suffers from the softened polymer chains of gelator at high temperatures,leading to liquid leakage and severe growth of Li dendrite.Here,a novel inorganic ionogel(PCNIL)combining lithium salt-containing IL with porous graphitic carbon nitride nanosheets(PCN)is developed through direct physical mixing.PCNIL exhibits a superior ionic conductivity(0.75 mS cm^(-1))at room temperature similar to that of neat IL electrolyte(LiIL)and a Li^(+)transference number(0.56)greatly higher than that of Li-IL(0.20).Furthermore,PCNIL maintains a temperature-independent shear storage modulus of up to 5 MPa from room temperature to 150℃.Consequently,the Li|PCNIL|Li symmetrical cell demonstrates extended reversible lithium plating/stripping over 1200 h without dendritic growth.The robust mechanical strength,excellent thermal stability,and electrochemical stability of PCNIL allow Li|PCNIL|LiFePO_(4)cells to operate stably in a wide temperature range of 25–150℃.
基金supported by the National Natural Science Foundation of China(No.52173267)the Key Laboratory of High Temperature Electromagnetic Materials and Structure of MOE(No.KB202402).
文摘Graphitic carbon nitride(g-C_(3)N_(4))has garnered significant attention due to its remarkable advantages such as lightweight,exceptional chemical stability and defect-rich surface.Nevertheless,its inadequate electrical conductivity and impedance matching hindered the practical implementation in the electromagnetic wave absorption(EMWA)field.To address these challenges,we developed a composites system of carbon spheres/g-C_(3)N_(4)(CCN)through a supramolecular self-assembly strategy,subsequently integrated with reduced graphene oxide(RGO)via a water bath method.Systematic investigation revealed that the EMWA performance of CCN/RGO composites exhibited a distinct dependence(a trend of first increasing and then decreasing)on RGO content.Especially,when the mass ratio of RGO to CCN was 20%,the CCN/RGO composite brought a minimum reflection loss value of-45.40 dB at 13.44 GHz and a broad effective absorbing bandwidth of 6.32 GHz at 2.19 mm.First-principles calculations based on density functional theory suggested that the constructed heterostructure effectively facilitated electron mobility and charge redistribution,boosting both conductive loss and polarization loss mechanisms.The exceptional absorption performance was ascribed to the synergistic effects of conductive loss,relaxation loss,and suitable impedance matching.As a results,this work provided a rational design strategy for high-performance g-C_(3)N_(4)-based EMWA materials.
基金supported by the National Natural Science Foundation of China(22262010,22062005,22165005,U20A20128)Guangxi Science and Technology Fund for Distinguished HighTalent Introduction Program(AC22035091)Guangxi Science Fund for Distinguished Young Scholars(2019GXNSFFA245016)。
文摘Rational design of defected carbons adjacent to nitrogen(N)dopants is a fascinating but challenging approach for enhancing the catalytic performance of N-doped carbon.Meanwhile,the combined effect of heteroatom doping and defect engineering can efficiently increase the oxygen reduction reaction(ORR)ability of inactive carbons through charge redistribution.Herein,we report that an enhanced built-in electric field caused by the combined effect of N-doping and carbon defects in the twodimensional(2D)mesoporous N-doped carbon nano flakes(NCNF)is a promising technique for improving ORR performance.As a result,the NCNF exhibits more promising ORR activity than Pt/C and similar performance with reported robust catalysts.Comprehensive experimental and theoretical investigations suggest that topologically defected carbon adjacent to the graphitic valley nitrogen is a real active site,rendering optimal energy for the adsorption of ORR intermediates and lowering the total energy barrier for ORR.Also,NCNF-based Zn-air batteries exhibited an excellent power density and specific capacity of~121.10 mW cm^(-2)and~679.86 mA h g_(Zn)^(-1),respectively.This study not only offers new insights into defected carbons with graphitic valley N for ORR but also proposes novel catalyst design principles and provides a solid grasp of the built-in electric field effect on the ORR performance of defective catalysts.
基金supported by the National Basic Research Program of China(2011CB933700)the National Natural Science Foundation of China(21271165)~~
文摘With the objectives of enhancing the stability,optical properties and visible-light photocatalytic activity of photocatalysts,we modified oxygen vacancy-rich zinc oxide(Vo-ZnO) with graphitic carbon nitride(g-C3N4). The resulting g-C3N4/Vo-ZnO hybrid photocatalysts showed higher visible-light photocatalytic activity than pure Vo-ZnO and g-C3N4. The hybrid photocatalyst with a g-C3N4 content of 1 wt% exhibited the highest photocatalytic degradation activity under visible-light irradiation(λ≥ 400 nm). In addition,the g-C3N4/Vo-ZnO photocatalyst was not deactivated after five cycles of methyl orange degradation,indicating that it is stable under light irradiation. Finally,a Z-scheme mechanism for the enhanced photocatalytic activity and stability of the g-C3N4/Vo-ZnO hybrid photocatalyst was proposed. The fast charge separation and transport within the g-C3N4/Vo-ZnO hybrid photocatalyst were attributed as the origins of its enhanced photocatalytic performance.
基金supported by the Natural Science Foundation of China(NSFC Grant No.20803064)the Natural Science Foundation of Zhejiang Provence(Y4090348 and LY12B03007)Qianjiang Talent Project in Zhejiang Province(2010R10039 and 2013R10056)
文摘A series of high surface area graphitic carbon materials (HSGCs) were prepared by ball-milling method. Effect of the graphitic degree of HSGCs on the catalytic performance of Ba-Ru-K/HSGC-x (x is the ball-milling time in hour) catalysts was studied using ammonia synthesis as a probe reaction. The graphitic degree and pore structure of HSGC-x supports could be successfully tuned via the variation of ball-milling time. Ru nanoparticles of different Ba-Ru-K/HSGC-x catalysts are homogeneously distributed on the supports with the particle sizes ranging from 1.6 to 2.0 nm. The graphitic degree of the support is closely related to its facile electron transfer capability and so plays an important role in improving the intrinsic catalytic performance of Ba-Ru-K/HSGC-x catalyst.
基金National Natural Science Foundation of China,Grant/Award Number:51777138Deutsche Forschungsgemeinschaft(DFG,German Research Foundation),Grant/Award Number:491183248Open Access Publishing Fund of the University of Bayreuth。
文摘N-doped carbons as one of the most prominent anode materials to replace standard graphite exhibit outstanding Li+storage performance.However,N-doped carbon anodes still suffer from low N-doping levels and low initial Coulombic efficiency(ICE).In this study,high N-doped and low graphitic-N carbons(LGNCs)with enhanced ICE were synthesized by taking advantage of a denitrification strategy for graphitic carbon nitride(g-C_(3)N_(4)).In brief,more than 14.5 at%of N from g-C_(3)N_(4)(55.1 at%N)was retained by reacting graphitic-N with lithium,which was subsequently removed.As graphitic-N is largely responsible for the irreversible capacity,the anode's performance was significantly increased.Compared to general N-doped carbons with high graphitic-N proportion(>50%)and low N content(<15 at%),LGNCs delivered a low proportion of 10.8%-17.2% within the high N-doping content of 14.5-42.7 at%,leading to an enhanced specific capacity of 1499.9mAh g^(-1) at an ICE of 93.7% for the optimal sample of LGNC(4:1).This study provides a facile strategy to control the N content and speciation,achieving both high Li+storage capacity and high ICE,and thus promoting research and application of N-doped carbon materials.
基金supported by the National Program on Key Basic Research Project (2016YFA0203000)the Early Career Scheme (ECS 809813) from the Research Grant Council, Hong Kong SAR Government+2 种基金the Croucher Foundation Visitorship for PRC Scholars 2015/16 at The Education University of Hong Kongthe National Natural Science Foundation of China (51672312, 21373275)the Program for New Century Excellent Talents in University (NCET-12-0668)~~
文摘Pure bismuth(Bi) metal-modified graphitic carbon nitride(g-C3N4) composites(Bi-CN) with a pomegranate-like structure were prepared by an in situ method.The Bi-CN composites were used as photocatalysts for the oxidation of nitric oxide(NO) under visible-light irradiation.The inclusion of pure Bi metal in the g-C3N4 layers markedly improved the light absorption of the Bi-CN composites from the ultraviolet to the near-infrared region because of the typical surface plasmon resonance of Bi metal.The separation and transfer of photogenerated charge carriers were greatly accelerated by the presence of built-in Mott-Schottky effects at the interface between Bi metal and g-C3N4.As a result,the Bi-CN composite photocatalysts exhibited considerably enhanced efficiency in the photocatalytic removal of NO compared with that of Bi metal or g-C3N4 alone.The pomegranate-like structure of the Bi-CN composites and an explanation for their improved photocatalytic activity were proposed.This work not only provides a design for highly efficient g-C3N4-based photocatalysts through modification with Bi metal,but also offers new insights into the mechanistic understanding of g-C3N4-based photo catalysis.
基金supported by Xiamen University Malaysia Research Fund (XMUMRF/2019-C3/IENG/0013)financial assistance and faculty start-up grants/supports from Xiamen University~~
文摘As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future.
基金financially supported by the Programs of Japan Science and Technology Agency:Promoting Individual Research to Nature the Seeds of Future Innovation and Organizing the Unique and Innovative Network,and Advanced Catalytic Transformation Program for Carbon Utilization
文摘Graphitic carbon nitride(g-C3N4)was synthesized by heating melamine and was then treated with sodium hydroxide solution under a hydrothermal condition to obtain g-C3N4 with a large specific surface area(HSSA).HSSA shows higher photocatalytic activity for decomposition of acetaldehyde than that of original g-C3N4.HSSA was modified with RuO2 as a co-catalyst by the impregnation method.HSSA loaded with 0.05 wt%RuO2 shows the highest photocatalytic activity for acetaldehyde decomposition under visible light(k=455 nm).
基金the National Natural Science Foundation of China(No.51804344)the Program of Huxiang Young Talents(No.2019RS2002)+1 种基金the Innovation and Entrepreneurship Project of Hunan Province,China(No.2018GK5026)the Innovation-Driven Project of Central South University(No.2020CX027)。
文摘Graphitic carbons with reasonable pore volume and appropriate graphitization degree can provide efficient Li+/electrolyte-transfer channels and ameliorate the sluggish dynamic behavior of battery-type carbon negative electrode in lithium-ion capacitors(LICs).In this work,onion-like graphitic carbon materials are obtained by using carbon quantum dots as precursors after sintering,and the effects of alkali metal salts on the structure,morphology and performance of the samples are focused.The results show that alkali metal salts as activator can etch graphitic carbons,and the specific surface area and pore size distribution are intimately related to the description of the alkali metal salt.Moreover,it also affects the graphitization degree of the materials.The porous graphitic carbons(SGCs)obtained by NaCl activation exhibit high specific surface area(77.14 m^(2)·g^(-1))and appropriate graphitization degree.It is expectable that the electrochemical performance for lithium-ions storage can be largely promoted by the smart combination of catalytic graphitization and pores-creating strategy.High-performance LICs(S-GCs//AC LICs)are achieved with high energy density of 92 Wh·kg^(-1)and superior rate capability(66.3 Wh·kg^(-1)at10 A·g^(-1))together with the power density as high as10020.2 W·kg^(-1).
文摘The graphitic carbon nitride(g-C_3N_4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of environmental remediation. The g-C_3N_4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are ‘‘earth-abundant.'' This review summarizes the latest progress related to the design and construction of g-C_3N_4-based materials and their applications including catalysis, sensing,imaging, and white-light-emitting diodes. An outlook on possible further developments in g-C_3N_4-based research for emerging properties and applications is also included.
文摘Low optical absorption and photocorrosion are two crucial issues limiting the practical applications of zinc oxide(ZnO)-based photocatalysts.In this paper,we report the fabrication of graphitic-carbon-mediated ZnO nanorod arrays(NRAs)with enhanced photocatalytic activity and photostability for CO2 reduction under visible light irradiation.ZnO NRA/C-x(x=005,01,02,and 03)nanohybrids are prepared by calcining pre-synthesized ZnO NRAs with different amounts of glucose(0.05,0.1,0.2,and 0.3 g)as a carbon source via a hydrothermal method.X-ray photoelectron spectroscopy reveals that the obtained ZnO NRA/C-x nanohybrids are imparted with the effects of both carbon doping and carbon coating,as evidenced by the detected C-O-Zn bond and the C-C,C-O and C=O bonds,respectively.While the basic structure of ZnO remains unchanged,the UV-Vis absorption spectra show increased absorbance owing to the carbon doping effect in the ZnO NRA/C-x nanohybrids.The photoluminescence(PL)intensities of ZnO NRA/C-x nanohybrids are lower than that of bare ZnO NRA,indicating that the graphitic carbon layer coated on the surface of the ZnO NRA significantly enhances the charge carrier separation and transport,which in turn enhances the photoelectrochemical property and photocatalytic activity of the ZnO NRA/C-x nanohybrids for CO2 reduction.More importantly,a long-term reaction of photocatalytic CO2 reduction demonstrates that the photostability of ZnO NRA/C-x nanohybrids is significantly increased in comparison with the bare ZnO NRA.
基金supported by National Natural Science Foundation of China(20801023)the Fundamental Research Funds for the Central Universities(51208024)
文摘Europium-doped graphitic carbon nitride was synthesized by an easy method and characterized by X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (UV-Vis DRS), Fourier transform infrared spectroscopy (FTIR), photolu- minescence spectra (PL) and transmission electron microscopy (TEM). The effect of dopant concentration on the rate of photocata- lytic degradation was investigated through degrading methylene blue aqueous solution. The results indicated that the europium-doped samples all possessed increased photocatalytic activity and the optimal europium content was 0.38 wt.%. Moreover, a possible photo- catalytic mechanism for the europium-doped graphitic carbon nitride was proposed.
基金supported by the National Natural Science Foundation of China(41701364)the Liaoning Doctoral Priming Fund Project(201601333,20170520109)+2 种基金the Basic Scientific Research in Colleges and Universities in Heilongjiang Province(KJCXZD201715)the Harbin Science and Technology Bureau Project(2017RAQXJ145)supported by Super Computing Center of Dalian University of Technology~~
文摘Nitrogen vacancies and sulfur co-doped g-C3N4 with outstanding N2 photofixation ability was synthesized via dielectric barrier discharge plasma treatment. X-ray diffraction, ultraviolet–visible spectroscopy, N2 adsorption, scanning electron microscopy, X-ray photoelectron spectroscopy, photoluminescence spectroscopy, and temperature-programmed desorption were used to characterize the as-prepared catalyst. The results showed that plasma treatment cannot change the morphology of the as-prepared catalyst but introduces nitrogen vacancies and sulfur into g-C3N4 lattice simultaneously. The as-prepared co-doped g-C3N4 displays an ammonium ion production rate as high as 6.2 mg·L^-1·h^-1·gcat^-1, which is 2.3 and 25.8 times higher than that of individual N-vacancy-doped g-C3N4 and neat g-C3N4, respectively, as well as showing good catalytic stability. Experimental and density functional theory calculation results indicate that, compared with individual N vacancy doping, the introduction of sulfur can promote the activation ability of N vacancies to N2 molecules, leading to promoted N2 photofixation performance.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2020R1I1A1A01072161)and under the framework of the International Cooperation Program managed by NRF(No.2017K2A9A2A10013104)supported by the NRF grant funded by the Korea government(MSIP)(No.NRF-2020R1A2C3008671).
文摘The exfoliation of bulk graphitic carbon nitride(g-C_(3)N_(4))into monolayer has been intensively studied to induce maximum sur-face area for fundamental studies,but ended in failure to realize chemi-cally and physically well-defined monolayer of g-C_(3)N_(4)mostly due to the difficulty in reducing the layer thickness down to an atomic level.It has,therefore,remained as a challenging issue in two-dimensional(2D)chemistry and physics communities.In this study,an“atomic monolayer of g-C_(3)N_(4)with perfect two-dimensional limit”was successfully prepared by the chemically well-defined two-step routes.The atomically resolved monolayer of g-C_(3)N_(4)was also confirmed by spectroscopic and micro-scopic analyses.In addition,the experimental Cs-HRTEM image was collected,for the first time,which was in excellent agreement with the theoretically simulated;the evidence of monolayer of g-C_(3)N_(4)in the perfect 2D limit becomes now clear from the HRTEM image of orderly hexagonal symmetry with a cavity formed by encirclement of three adjacent heptazine units.Compared to bulk g-C_(3)N_(4),the present g-C_(3)N_(4)monolayer showed significantly higher photocatalytic gen-eration of H2O2 and H2,and electrocatalytic oxygen reduction reaction.In addition,its photocatalytic efficiency for H2O2 production was found to be the best for any known g-C_(3)N_(4)nanomaterials,underscoring the remarkable advantage of monolayer formation in optimizing the catalyst performance of g-C_(3)N_(4).
基金supported by the National Natural Science Foundation of China (21673024)Advanced Catalysis and Green Manufacturing Collaborative Innovation Center (ACGM2016-06-28)+1 种基金Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2017-K28)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (PPZY2015B145)~~
文摘Fe-containing graphitic carbon nitride(Fe-g-C3N4) materials were synthesized via one-step pyroly-sis of FeCl3 and dicyandiamide. The physicochemical properties of the synthesized Fe-g-C3N4 sam-ples were characterized by N2 adsorption-desorption, X-ray diffraction, thermal gravimetric, Fourier transform infrared, UV-vis diffuse reflectance, X-ray photoelectron spectroscopy, and transmission electron microscopy. The Fe cations were anchored by nitrogen-rich g-C3N4, whereas the graphitic structures of g-C3N4 were retained after the introduction of Fe. As heterogeneous catalysts, Fe-g-C3 N4 exhibited good catalytic activity in the direct hydroxylation of benzene to phenol with H2O2, affording a maximum yield of phenol of up to 17.5%. Compared with other Fe- and V-containing g-C3N4 materials, Fe-g-C3N4 features a more convenient preparation procedure and higher catalytic productivity of phenol.
基金financially supported by the National Natural Science Foundation of China(Nos.51777215 and 52005147)the Special Foundation of Taishan Scholar Project。
文摘This paper reported the impedance-type humidity sensor based on Ti_(3)C_(2)T_(x)/g-C_(3)N_(4)nanomaterials which was fabricated on a flexible polyethylene terephthalate(PET)substrate.The scanning electron microscopy(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS)measurements were used to demonstrate the successful synthesis and combination of Ti_(3)C_(2)T_(x)and g-C_(3)N_(4)nanomaterials.The performance of the humidity sensor was tested at room temperature.The experimental results showed that the Ti_(3)C_(2)T_(x)nanosheets with g-C_(3)N_(4)nanosheets endowed the humidity sensor with an ultra-high response,rapid response/recovery time,and negligible hysteresis.The complex impedance spectroscopy(CIS)and bode diagrams were used to further analyze the sensing mechanism of the Ti_(3)C_(2)T_(x)/g-C_(3)N_(4)humidity sensor.The Ti_(3)C_(2)T_(x)/g-C_(3)N_(4)humidity sensor can monitor skin humidity and high-humidity alarm,which demonstrates great potential applications in various fields.