期刊文献+
共找到239,893篇文章
< 1 2 250 >
每页显示 20 50 100
Enhancing energy density in planar micro-supercapacitors:The role of few-layer graphite/carbon black/NiCo_(2)O_(4) composite materials
1
作者 ZHANG Wanggang HUANG Lei +3 位作者 WANG Menghu WANG Jian WEI Aili LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第5期646-662,共17页
The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is... The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies. 展开更多
关键词 graphite/carbon black composite NiCo_(2)O_(4) screen printing planar micro-supercapacitor energy density mechanical flexibility
在线阅读 下载PDF
Properties of copper/graphite/carbon nanotubes composite reinforced by carbon nanotubes 被引量:4
2
作者 Xin-Ying Liu Xiong-Zhi Xiang +1 位作者 Fei Niu Xiao-Jun Bai 《Rare Metals》 SCIE EI CAS CSCD 2013年第3期278-283,共6页
Electroless Cu plating was used for flake G powder and CNTs, Cu-G-CNTs (copper/graphite/carbon nanotubes) composites were manufactured by means of powder metallurgical method. The influences of CNTs on the mechanica... Electroless Cu plating was used for flake G powder and CNTs, Cu-G-CNTs (copper/graphite/carbon nanotubes) composites were manufactured by means of powder metallurgical method. The influences of CNTs on the mechanical properties, conductivity properties, friction, and wear performance of the composite were examined. The results indicate that adding a small amount of CNTs can improve comprehensive property of the composites, especially mechanical property. However, excessive CNT, which is easily winding reunion and grain boundary seg- regation, results in performances degradation. 展开更多
关键词 Cu/G composite carbon nanotubes RESISTIVITY Friction and wear resistance
在线阅读 下载PDF
Rethinking the Roles of Graphite and Graphene in Lithium-Ion Batteries From Environmental and Industrial Perspectives
3
作者 Benjamin Robinson Jie Yang +2 位作者 Rui Tan Sergey Alekseev Chee Tong John Low 《Carbon Energy》 2026年第1期60-94,共35页
Graphite,encompassing both natural graphite and synthetic graphite,and graphene,have been extensively utilized and investigated as anode materials and additives in lithium-ion batteries(LIBs).In the pursuit of carbon ... Graphite,encompassing both natural graphite and synthetic graphite,and graphene,have been extensively utilized and investigated as anode materials and additives in lithium-ion batteries(LIBs).In the pursuit of carbon neutrality,LIBs are expected to play a pivotal role in reducing CO_(2)emissions by decreasing reliance on fossil fuels and enabling the integration of renewable energy sources.Owing to their technological maturity and exceptional electrochemical performance,the global production of graphite and graphene for LIBs is projected to continue expanding.Over the past decades,numerous researchers have concentrated on reducing the material and energy input whilst optimising the electrochemical performance of graphite and graphene,through novel synthesis methods and various modifications at the laboratory scale.This review provides a comprehensive examination of the manufacturing methods,environmental impact,research progress,and challenges associated with graphite and graphene in LIBs from an industrial perspective,with a particular focus on the carbon footprint of production processes.Additionally,it considers emerging challenges and future development directions of graphite and graphene,offering significant insights for ongoing and future research in the field of green LIBs. 展开更多
关键词 circular sustainability GRAPHENE graphite green processing net-zero
在线阅读 下载PDF
Determining the Effect of Grain Size on the Microstructure and Oxidation of Nuclear Graphite
4
作者 Xu Qiao Xinlei Cao +6 位作者 Yuying Zhang Wei Chen Chunzhen Yang Zhengcao Li Xing Zhou Ke Shen Zhou Zhou 《Carbon Energy》 2026年第1期138-152,共15页
Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,... Fine-grained nuclear graphite is a key material in high-temperature gas-cooled reactors(HTGRs).During air ingress accidents,core graphite components undergo severe oxidation,threatening structural integrity.Therefore,understanding the oxidation behavior of nuclear graphite is essential for reactor safety.The influence of oxidation involves multiple factors,including temperature,sample size,oxidant,impurities,filler type and size,etc.The size of the filler particles plays a crucial role in this study.Five ultrafine-and superfine-grained nuclear graphite samples(5.9-34.4μm)are manufactured using identical raw materials and manufacturing processes.Isothermal oxidation tests conducted at 650℃-750℃ are used to study the oxidation behavior.Additionally,comprehensive characterization is performed to analyze the crystal structure,surface morphology,and nanoscale to microscale pore structure of the samples.Results indicate that oxidation behavior cannot be predicted solely based on filler grain size.Reactive site concentration,characterized by active surface area,dominates the chemical reaction kinetics,whereas pore tortuosity,quantified by the structural parameterΨ,plays a key role in regulating oxidant diffusion.These findings clarify the dual role of microstructure in oxidation mechanisms and establish a theoretical and experimental basis for the design of high-performance nuclear graphite capable of long-term service in high-temperature gas-cooled reactors. 展开更多
关键词 DIFFUSION nuclear graphite OXIDATION pore structure reaction rate
在线阅读 下载PDF
Regularly Arranged Micropore Architecture Enables Efficient Lithium-Ion Transport in SiO_(x)/ Artificial Graphite Composite Electrode
5
作者 Jaejin Lim Dongyoon Kang +4 位作者 Cheol Bak Seungyeop Choi Mingyu Lee Hongkyung Lee Yong Min Lee 《Nano-Micro Letters》 2026年第3期103-120,共18页
To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content,it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as wel... To enhance the electrochemical performance of lithium-ion battery anodes with higher silicon content,it is essential to engineer their microstructure for better lithium-ion transport and mitigated volume change as well.Herein,we suggest an effective approach to control the micropore structure of silicon oxide(SiO_(x))/artificial graphite(AG)composite electrodes using a perforated current collector.The electrode features a unique pore structure,where alternating high-porosity domains and low-porosity domains markedly reduce overall electrode resistance,leading to a 20%improvement in rate capability at a 5C-rate discharge condition.Using microstructure-resolved modeling and simulations,we demonstrate that the patterned micropore structure enhances lithium-ion transport,mitigating the electrolyte concentration gradient of lithium-ion.Additionally,perforating current collector with a chemical etching process increases the number of hydrogen bonding sites and enlarges the interface with the SiO_(x)/AG composite electrode,significantly improving adhesion strength.This,in turn,suppresses mechanical degradation and leads to a 50%higher capacity retention.Thus,regularly arranged micropore structure enabled by the perforated current collector successfully improves both rate capability and cycle life in SiO_(x)/AG composite electrodes,providing valuable insights into electrode engineering. 展开更多
关键词 Lithium-ion battery SiO_(x)/artificial graphite composite electrode Microstructure PORE Perforated current collector
在线阅读 下载PDF
Removal of bisphenol a through peroxymonosulfate activation with N-doped graphite carbon spheres coated cobalt nanoparticles catalyst:Synergy of nonradicals
6
作者 Huiyuan Deng Na Zhao +7 位作者 Junjie You Zhicheng Pan Bo Xing Yuling Ye Bo Lai Yuxi Wang Tongrui Lu Xiaonan Liu 《Chinese Chemical Letters》 2025年第8期647-654,共8页
N-doped graphite carbon sphere coated cobalt nanoparticle catalyst(Co@C-N-900),prepared by solvothermal-calcination method,is applied to activate peroxymonosulfate(PMS)for bisphenol A(BPA)elimination.The outcomes demo... N-doped graphite carbon sphere coated cobalt nanoparticle catalyst(Co@C-N-900),prepared by solvothermal-calcination method,is applied to activate peroxymonosulfate(PMS)for bisphenol A(BPA)elimination.The outcomes demonstrate that the Co@C-N-900 could effectively activate PMS,thereby causing efficient removal of BPA in water.In addition,the Co@C-N-900/PMS system also has the advantages of low metal leaching,applicability in high salinity environments,good selectivity and stability.Further investigations using electron paramagnetic resonance,chronoamperometry,and quenching experiments demonstrated that the Co@C-N-900/PMS system is a typical non-radical route with singlet oxygen(^(1)O_(2))as the main reactive oxygen species(ROS).Density functional theory calculations(DFT)indicate that N-doping can effectively regulate the charge distribution on the catalyst surface,generating acidic/alkaline sites favorable for PMS adsorption and activation.Furthermore,it also can enhance the interaction and charge transfer capacity between the Co@C-N-900 and PMS.Lastly,LC-QTOF-MS/MS analysis revealed two possible BPA degradation pathways:(1)^(1)O_(2)attacked the isopropyl group in BPA between the two phenyl groups,causingβ-scission to occur.(2)Following the oxidation of the hydroxyl group in the aromatic ring of BPA,^(1)O_(2)could cause furtherβ-scission.The prepared Co@C-N-900 catalyst is a very promising catalyst,which would offer a workable remedy for treating water pollution. 展开更多
关键词 Co-based catalyst Nitrogen doped graphite PEROXYMONOSULFATE Non-radical pathway DFTcal culations
原文传递
A sol-gel strategy of constructing nanosized Hf_(6)Ta_(2)O_(17)encapsulated graphite flakes and its enhancement on the ablation property of carbon/carbon composites
7
作者 Guanghui Feng Ruoxi Zhang +1 位作者 Xiyuan Yao Hejun Li 《Journal of Materials Science & Technology》 2025年第1期292-301,共10页
Herein,nanosized Hf_(6)Ta_(2)O_(17) encapsulated graphite flakes were firstly constructed using the sol-gel method,then deposited on the surface of carbon/carbon(C/C)composites by plasma spraying technique to prolong ... Herein,nanosized Hf_(6)Ta_(2)O_(17) encapsulated graphite flakes were firstly constructed using the sol-gel method,then deposited on the surface of carbon/carbon(C/C)composites by plasma spraying technique to prolong their service span in critical environments.Nanoindentation results affirmed the active influ-ence of graphite flakes on elevating the toughness of the Hf_(6)Ta_(2)O_(17) coating.Besides,after being exposed to the oxyacetylene torch with a peak temperature of about 2000℃,the sample achieved near zero ab-lation(0.06 mg/s),meanwhile its porosity and mass ablation rate showed 39.5%and 60.0%reduction when compared to pure Hf_(6)Ta_(2)O_(17) sample.During exposure,the external Hf_(6)Ta_(2)O_(17) served as an oxy-gen barrier for internal graphite flakes,inversely internal graphite flakes provided a“pinning”effect on external Hf_(6)Ta_(2)O_(17),which accounted for its exceptional ablation performance.This work offers a new insight into the design of surface modification of C/C composites and other high-temperature structural materials. 展开更多
关键词 carbon/carbon composites Encapsulation structure High-temperature properties Thermal analysis
原文传递
A scalable approach to Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)@carbon/expanded graphite as cathode for ultralong-lifespan and low-temperature sodium-ion batteries
8
作者 Zheng Li Fangkun Li +9 位作者 Xijun Xu Jun Zeng Hangyu Zhang Lei Xi Yiwen Wu Linwei Zhao Jiahe Chen Jun Liu Yanping Huo Shaomin Ji 《Chinese Chemical Letters》 2025年第10期616-622,共7页
Mixed polyanion phosphate Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP)is regarded as the most promising cathode material for sodium-ion batteries(SIBs),due to its high structural stability and low-cost environmental frien... Mixed polyanion phosphate Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7)(NFPP)is regarded as the most promising cathode material for sodium-ion batteries(SIBs),due to its high structural stability and low-cost environmental friendliness.However,its intrinsic low conductivity and sluggish Na^(+)diffusion restricted the fast-charge and low-temperature sodium storage.Herein,an NFPP composite encapsulated by in-situ pyrolytic carbon and coupled with expanded graphite(NFPP@C/EG)was constructed via a sol-gel method followed by a ballmill procedure.Due to the dual-carbon modified strategy,this NFPP@C/EG only enhanced the electronic conductivity,but also endowed more channels for Na^(+)diffusion.As cathode for SIBs,the optimized NFPP(M-NFPP@C/EG)delivers excellent rate capability(capacity of~80.5 mAh/g at 50 C)and outstanding cycling stability(11000 cycles at 50 C with capacity retention of 89.85%).Additionally,cyclic voltammetry(CV)confirmed that its sodium storage behavior is pseudocapacitance-controlled,with in-situ electrochemical impedance spectroscopy(EIS)further elucidating improvements in electrode reaction kinetics.At lower temperatures(0℃),M-NFPP@C/EG demonstrated exceptional cycling performance(8800 cycles at 10 C with capacity retention of 95.81%).Moreover,pouch cells also exhibited excellent stability.This research demonstrates the feasibility of a dual carbon modification strategy in enhancing NFPP and proposes a low-cost,high-rate,and ultra-stable cathode material for SIBs. 展开更多
关键词 Na_(4)Fe_(3)(PO_(4))_(2)P_(2)O_(7) Expanded graphite Dual-carbon modified Polyanionic compounds cathode Sodium-ion batteries
原文传递
Effect of vinylene carbonate as electrolyte additive on cycling performance of LiFePO_4/graphite cell at elevated temperature 被引量:4
9
作者 宋海申 曹政 +3 位作者 张治安 赖延清 李劼 刘业翔 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期723-728,共6页
Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galva... Effects of film-forming additive on stability of electrode and cycling performance of LiFePO4/graphite cell at elevated temperature were studied. Two 18650 cells with and without VC additive were investigated by galvanostatic cycling, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis and Raman spectroscopy. The results show that in the presence of VC additive, dissolution of Fe from LiFePO4 material is greatly depressed and stability of graphite structure is improved; the additive can not only reduce reaction of electrolyte on surface of LiFePO4 electrode but also suppress reduction of solvent and thickening of the solid electrolyte interface (SEI) layer on graphite surface. Electrolyte with VC is considered to be a good candidate for improving cycling performance of the LiFePOa/graphite cell at elevated temperature. 展开更多
关键词 LiFeP04 vinylene carbonate electrolyte additive cycling performance
在线阅读 下载PDF
Influence of Ti target current on microstructure and properties of Ti-doped graphite-like carbon films 被引量:7
10
作者 王永欣 王立平 薛群基 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1372-1380,共9页
Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of ... Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of Ti target current were systemically investigated by Raman spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and ball-on-disk tribometer. With the increase of the Ti target current, the ratio of sp2 bond and the content of Ti as well as the film hardness and compressive internal stress increase, but the high content of the Ti would result in the loose film due to the formation of the squamose structure. Less incorporated Ti reduces the friction of the GLC film in dry-sliding condition, while pure GLC film exhibits the lowest friction coefficient in water-lubricated condition. Ti-GLC film deposited with low Ti target current shows high wear resistance in both dry-sliding and water-lubricated conditions. 展开更多
关键词 Ti-doped graphite-like carbon film MICROSTRUCTURE tribological performance target current
在线阅读 下载PDF
Calculation model of edge carbon atoms in graphite particles for anode of lithium-ion batteries 被引量:3
11
作者 张万红 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第11期2466-2475,共10页
Based on the hexagonal crystallite model of graphite,the electrochemical characteristics of carbon atoms on the edge and basal plane were proposed by analyzing graphite crystal structure and bonds of carbon atoms in d... Based on the hexagonal crystallite model of graphite,the electrochemical characteristics of carbon atoms on the edge and basal plane were proposed by analyzing graphite crystal structure and bonds of carbon atoms in different sites.A spherical close-packed model for graphite particle was developed.The fractions of surface carbon atoms(SCA) and edge carbon atoms(ECA) were derived in the expression of crystallographic parameters and particle size,and the effects of ECA on the initial irreversible capacity and the mechanisms of action were analyzed and verified.The results show that the atoms on the edge are more active for electrochemical reactions,such as electrolyte decomposition and tendency to form stable bond with other atoms and groups.For the practical graphite particle,corresponding modifying factors were introduced to revise the difference in calculating results.The revised expression is suitable for the calculation of the fractions of SCA and ECA for carbon materials such as graphite,disordered carbon and modified graphite. 展开更多
关键词 Li-ion batteries carbon anode calculation model electrochemical properties mechanism of action
在线阅读 下载PDF
Carbon isotopes of graphite:Implications on fluid history 被引量:28
12
作者 F.J.Luque E.Crespo-Feo +1 位作者 J.F.Barrenechea L.Ortega 《Geoscience Frontiers》 SCIE CAS 2012年第2期197-207,共11页
Stable carbon isotope geochemistry provides important information for the recognition of funda- mental isotope exchange processes related to the movement of carbon in the lithosphere and permits the elab- oration of m... Stable carbon isotope geochemistry provides important information for the recognition of funda- mental isotope exchange processes related to the movement of carbon in the lithosphere and permits the elab- oration of models for the global carbon cycle. Carbon isotope ratios in fluid-deposited graphite are powerful tools for unravelling the ultimate origin of carbon (organic matter, mantle, or carbonates) and help to constrain the fluid history and the mechanisms involved in graphite deposition. Graphite precipitation in fluid-deposited occurrences results from C02- and/or CH4-bearing aqueous fluids. Fluid flow can be considered as both a closed (without replenishment of the fluid) or an open system (with renewal of the fluid by successive fluid batches). In closed systems, carbon isotope systematics in graphite is mainly governed by Rayleigh precipi- tation and/or by changes in temperature affecting the fractionation factor between fluid and graphite. Such processes result in zoned graphite crystals or in successive graphite generations showing, in both cases, isotopic variation towards progressive 13C or 12C enrichment (depending upon the dominant carbon phase in the fluid, C02 or CH4, respectively). In open systems, in which carbon is episodically introduced along the fracture systems, the carbon systematics is more complex and individual graphite crystals may display oscillatory zoning because of Rayleigh precipitation or heterogeneous variations of 613C values when mixing of fluids or changes in the composition of the fluids are the mechanisms responsible for graphite precipitation. 展开更多
关键词 graphite carbon isotopes CRUST C-O-H fluids
在线阅读 下载PDF
Self-monitoring Application of Asphalt Concrete Containing Graphite and Carbon Fibers 被引量:6
13
作者 LIU Xiaoming WU Shaopeng +1 位作者 LI Ning GAO Bo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第2期268-271,共4页
The self-monitoring application of asphalt concrete containing graphite and carbon fibers using indirect tensile test and wheel rolling test were introduced. The experiment results indicate that this kind of pitch-bas... The self-monitoring application of asphalt concrete containing graphite and carbon fibers using indirect tensile test and wheel rolling test were introduced. The experiment results indicate that this kind of pitch-based composite is effective for strain/stress self-monitoring. In the indirect tensile test, for a completely conductive asphalt concrete specimen, the piezoresistivity was very weak and slightly positive, which meant the resistivity increase with the increment of tensile strain at all stress/strain amplitudes, with the gage factor as high as 6. The strain self-sensing ability was superior in the case of higher graphite content. However, when the conductive concrete was embedded into common asphalt concrete specimen as a partial structure function, the piezoresistivity was positive at all stress/strain amplitudes and with the gage factor of 13, which was much higher than that of completely conductive specimen. Thus, the strain self-sensing ability was superior when conductive asphalt concrete was taken in as a partial structure function. In the wheel-rolling test, the piezoresistivity was highly positive. At any stress amplitude, the piezoresistivity was strong, with the gage factor as high as 100, which was higher for a stress amplitude of 0.7 MPa than that of 0.5 MPa. 展开更多
关键词 asphalt concrete graphite carbon fibers SELF-MONITORING PIEZORESISTIVITY
在线阅读 下载PDF
Towards Efficient Electromagnetic Interference Shielding Performance for Polyethylene Composites by Structuring Segregated Carbon Black/Graphite Networks 被引量:6
14
作者 Cheng-hua Cui 鄢定祥 +4 位作者 Huan Pang Li-chuan Jia Yu Bao Xin Jiang Zhong-ming Li 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2016年第12期1490-1499,共10页
An electromagnetic interference (EMI) shielding composite based on ultrahigh molecular weight polyethylene (UHMWPE) loaded with economical graphite-carbon black (CB) hybrid fillers was prepared via a green and f... An electromagnetic interference (EMI) shielding composite based on ultrahigh molecular weight polyethylene (UHMWPE) loaded with economical graphite-carbon black (CB) hybrid fillers was prepared via a green and facile methodology, i.e., high-speed mechanical mixing combined with hot compression thus avoiding the assistance of the intensive ultrasound dispersion in volatile organic solvents. In this composite, the graphite-CB hybrid fillers were selectively distributed in the interfacial regions of UHMWPE domains resulting a typical segregated structure. Thanks to the specific morphology of segregated conductive networks along with the synergetic effect of large-sized graphite flakes and small-sized CB nanoparticles, a low filler loading of 7.7 vol% (15 wt%) yielded the graphite-CB/UHMWPE composites with a satisfactory electrical conductivity of 33.9 S/m and a superior shielding effectiveness of 40.2 dB, manifesting the comparable value of the pricey large-aspect-ratio carbon nanofillers (e.g., carbon nanotubes and graphene nanosheets) based polymer composites. More interestingly, with the addition of 15 wt% graphite-CB (1/3, W/W) hybrid fillers, the tensile strength and elongation at break of the composite reached 25.3 MPa and 126%, respectively; with a remarkable increase of 58.1% and 2420% over the conventional segregated graphite/UHMWPE composites. The mechanical reinforcement could be attributed to the favor of the small-sized CB particles in the polymer molecular diffusion between UHMWPE domains which in tuna provided a stronger interfacial adhesion. This work provides a facile, green and affordable strategy to obtain the polymer composites with high electrical conductivity, efficient EMI shielding, and balanced mechanical performance. 展开更多
关键词 graphite carbon black Segregated structure Electromagnetic interference Synergistic effect.
原文传递
Influence of adding carbon nanotubes and graphite to Ag-MoS_2 composites on the electrical sliding wear properties 被引量:5
15
作者 Shu LI Yi FENG Xiting YANG 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2010年第1期27-34,共8页
Silver matrix composite brushes were fabricated by means of powder metallurgy, which included pressing at 300 MPa and then sintering for 1 h in pure H2 protective atmosphere at 700 ℃ and repressing at 500 MPa. Four k... Silver matrix composite brushes were fabricated by means of powder metallurgy, which included pressing at 300 MPa and then sintering for 1 h in pure H2 protective atmosphere at 700 ℃ and repressing at 500 MPa. Four kinds composites with different compositions were produced, and the mechanical properties and electrical wear performance were investigated. The results showed that the composite added with carbon nanotubes had a higher hardness and strength, a lower contact voltage drop and an excellent anti-wear property in electrical sliding wear, because of the reinforcement ability of carbon nanotubes. Adding graphite to the composite also decreased the wear loss and contact voltage drop, because graphite had an electrical current conducting ability which not only made the current pass the lubricating films easily but also eliminated and reduced the arc and spark effectively. 展开更多
关键词 Ag-MoS2 composite carbon nanotube graphite Contact voltage drop Friction coefficient Wear loss
原文传递
Progress in electrolyte and interface of hard carbon and graphite anode for sodiumion battery 被引量:14
16
作者 Qi Liu Rigan Xu +5 位作者 Daobin Mu Guoqiang Tan Hongcai Gao Ning Li Renjie Chen Feng Wu 《Carbon Energy》 SCIE CAS 2022年第3期458-479,共22页
It is essential to replace lithium-ion batteries(LIBs)from the perspective of the Earth's resources and the sustainable development of mankind.Sodium-ion batteries(SIBs)are important candidates due to their low pr... It is essential to replace lithium-ion batteries(LIBs)from the perspective of the Earth's resources and the sustainable development of mankind.Sodium-ion batteries(SIBs)are important candidates due to their low price and abundant storage capacity.Hard carbon(HC)and graphite have important applications in anode materials of SIBs.In this review,the research progress in electrolyte and interface between HC and graphite anode for SIBs is summarized.The properties and performance of three types of widely used electrolytes(carbo nate ester,ether,and ionic liquid)with additives,as well as the formation of solid electrolyte interface(SEI),which are crucial to the reversible capacity and rate capability of HC anodes,are also discussed.In this review,the co-intercalation performance and mechanism of solvation Na+into graphite are summarized.Besides,the faced challenges and existing problems in this field are also succinctly highlighted. 展开更多
关键词 ELECTROLYTE graphite hard carbon SEI sodium-ion battery
在线阅读 下载PDF
Insight into the change in carbon structure and thermodynamics during anthracite transformation into graphite 被引量:9
17
作者 Tian Qiu Jian-guo Yang Xue-jie Bai 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第2期162-172,共11页
The thermodynamic and kinetic mechanisms of Taixi anthracite during its graphitization process were explored.To understand the variation trends of carbon arrangement order,microcrystal size,and graphitization degree a... The thermodynamic and kinetic mechanisms of Taixi anthracite during its graphitization process were explored.To understand the variation trends of carbon arrangement order,microcrystal size,and graphitization degree against temperature during the graphitization process,a series of experiments were performed using Raman spectroscopy and X-ray diffraction(XRD).Subsequently,the influencing factors of the dominant reaction at different temperatures were analyzed using thermodynamics and kinetics.The results showed that the graphitization process of Taixi anthracite can be divided into three stages from the perspective of reaction thermodynamics and kinetics.Temperature played a crucial role in the formation and growth of a graphitic structure.Meanwhile,multivariate mechanisms coexisted in the graphitization process.At ultrahigh temperatures,the defects of synthetic graphite could not be completely eliminated and perfect graphite crystals could not be produced.At low temperatures,the reaction is mainly controlled by dynamics,while at high temperatures,thermodynamics dominates the direction of the reaction. 展开更多
关键词 ANTHRACITE graphitIZATION THERMODYNAMICS kinetics
在线阅读 下载PDF
Tailoring carbon chains for repairing graphite from spent lithium-ion battery toward closed-circuit recycling 被引量:7
18
作者 Chenxing Yi Peng Ge +2 位作者 Xiqing Wu Wei Sun Yue Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期97-107,I0004,共12页
Graphite, as a strategic mineral resource, the recycling from spent lithium-ion batteries(LIBs) has attracted considerable attention for meeting considerable economic value. However, closed-circuit recycling still suf... Graphite, as a strategic mineral resource, the recycling from spent lithium-ion batteries(LIBs) has attracted considerable attention for meeting considerable economic value. However, closed-circuit recycling still suffers from the lack of effective repair methods. Considering the existing defects, a series of Cchain length carbons have been successfully introduced to repair spent graphite. Obviously, with the evolution of carbon resources, the thickness and pores of the coating layer were tailored with the functional groups. Benefitting from the increased active sites and created fold structure, their coulombic efficiency is obviously restored from 14% to 86.89%, while the stable capacity is kept at approximately 384.9 mAh gafter 100 cycles. Moreover, their excellent rate properties are kept about approximately 200 mAh gat2 C, meeting the standard of commercial materials. Supported by the detailed kinetic behaviors, the enhanced rate is mainly dominated by pseudocapacitive behaviors, accompanied by deepening redox reactions. Meanwhile, the cost of the proposed approach for recycling spent graphite is 894.87 $ t^(-1),and the recycling profit for regenerating graphite is approximately 7000 $ t^(-1). Given this, this work is anticipated to shed light on the closed-circuit recycling of spent graphite and offer significant strategies to repair graphite. 展开更多
关键词 Spent lithium-ion battery graphite carbon coating REGENERATION Kinetic behaviors
在线阅读 下载PDF
An amorphous carbon-graphite composite cathode for long cycle life rechargeable aluminum ion batteries 被引量:3
19
作者 Jiang Wei Wei Chen +1 位作者 Demin Chen Ke Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第6期983-989,共7页
Natural graphite is investigated as the cathode for aluminum ion batteries in recent years. However, some drawbacks of the natural graphite such as severe volume swelling shorten its lifetime, In this work, we prepare... Natural graphite is investigated as the cathode for aluminum ion batteries in recent years. However, some drawbacks of the natural graphite such as severe volume swelling shorten its lifetime, In this work, we prepared a composite material by depositing an amorphous carbon on the graphite paper, The composite was used as a cathode to study the electrochemical performance in aluminum ion batteries. The charge/discharge results showed that the composite could exhibit a longer cycle life than the graphite paper, Electrochemical analyses demonstrated that the interface between the amorphous carbon and the graphite paper made a major contribution to the improvement of the cycling stability. 展开更多
关键词 Amorphous carbon graphite paper Aluminum ion batteries Cathode Ionic liquid Interface Phase equilibrium
原文传递
Soft carbon-coated bulk graphite for improved potassium ion storage 被引量:5
20
作者 Xiaqing Chang Ning Sun +2 位作者 Huanyu Zhou Razium ASoomro Bin Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第3期541-545,共5页
Potassium-ion batteries(PIBs) have attracted tremendous attention for large-scale energy storage fields based on abundant potassium resources. Graphite is a promising anode material for PIBs due to its low potassium i... Potassium-ion batteries(PIBs) have attracted tremendous attention for large-scale energy storage fields based on abundant potassium resources. Graphite is a promising anode material for PIBs due to its low potassium ion intercalation voltage and mature industrialized preparation technology. However, the inability of graphitic structures to endure large volume change during charge/discharge cycles is a major limitation in their advancement for practical PIBs. Herein, a soft carbon-coated bulk graphite composite is synthesized using PTCDA as a carbon precursor. The PTCDA-derived soft carbon coating layer with large interlayer distance facilities fast potassium ion intercalation/extraction in the BG@C composite and buffers severe volume change during the charge/discharge cycles. When tested as anode for PIBs, the composite realizes enhanced rate capability(131.3 mAh/g at 2 C, 1 C=279 m A/g) and cycling performance(capacity retention of 76.1% after 150 cycles at 0.5 C). In general, the surface modification route to engineer graphite anode could inherently improve the electrochemical performance without any structural alteration. 展开更多
关键词 graphite PTCDA Potassium-ion battery Anode materials carbon coating
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部