期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Discrimination for minimal hepatic encephalopathy based on Bayesian modeling of default mode network
1
作者 焦蕴 王训恒 +2 位作者 汤天宇 朱西琪 滕皋军 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期582-587,共6页
In order to classify the minimal hepatic encephalopathy (MHE) patients from healthy controls, the independent component analysis (ICA) is used to generate the default mode network (DMN) from resting-state functi... In order to classify the minimal hepatic encephalopathy (MHE) patients from healthy controls, the independent component analysis (ICA) is used to generate the default mode network (DMN) from resting-state functional magnetic resonance imaging (fMRI). Then a Bayesian voxel- wised method, graphical-model-based multivariate analysis (GAMMA), is used to explore the associations between abnormal functional integration within DMN and clinical variable. Without any prior knowledge, five machine learning methods, namely, support vector machines (SVMs), classification and regression trees ( CART ), logistic regression, the Bayesian network, and C4.5, are applied to the classification. The functional integration patterns were alternative within DMN, which have the power to predict MHE with an accuracy of 98%. The GAMMA method generating functional integration patterns within DMN can become a simple, objective, and common imaging biomarker for detecting MIIE and can serve as a supplement to the existing diagnostic methods. 展开更多
关键词 graphical-model-based multivariate analysis Bayesian modeling machine learning functional integration minimal hepatic encephalopathy resting-state functional magnetic resonance imaging (fMRI)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部